
Optimization in modern power systems

Lecture 10: Semidefinite Programming and OPF

Spyros Chatzivasileiadis



The Goals for Today!

• Review of Day 9

• Reminder: Assignment 2

• Questions and Clarifications on Assignments

• Semidefinite Programming (SDP)

• Example in SDP

• Convex Relaxations for AC-OPF

• Presentation by Joachim and Ibrahim
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Reviewing Day 9 in Groups!

• For 10 minutes discuss with the
person sitting next to you about:

• Three main points we discussed
in yesterday’s lecture

• One topic or concept that is not
so clear to you and you would
like to hear again about it
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Points you would like to discuss?

Questions about Assignments?
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Assignment 2: Solution Methods

• Timeline

• Jan 4 (today): handing out the assignment
• Monday, Jan 16: peer-review process
• Wednesday, Jan 18, 9am - 11am: Presentation in front of the class

• 15-minute presentation + 5 minutes questions

• Goal of the presentation. At the end of the presentation, the audience
must be able to:

• describe the basic principles of the solution method in 3 sentences
• remember a key figure or a key equation that describes how the
method works

• list 2 advantages and 2 disadvantages of the presented method

• The presenting group and the peer-review group are expected to have an
equally good knowledge of the subject. Questions can be addressed to
both the presenting group and the group that reviewed it.
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Peer-review process

• Two groups meet and review their presentations for two hours. During
the first hour, the first group reviews the presentation of the second
group. In the second hour, the presenting group becomes the peer-review
group and vice versa.

• Goal of the peer-review process: the peer-review group must help the
presenting group prepare a good presentation, that can be comprehensible
from the rest of the class. During this process, the peer-review group is
expected to gain a good understanding of the presentation topic
(otherwise the peer-reviewing would not have been successful).

• You are free to spend as much time as you think necessary in
peer-reviewing, but one hour per group is the minimum.
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Outline of Lecture

• Motivation: Convex vs. Non-Convex Problem and SDP

• What is SDP?

• Numerical Example

• What is a Positive Semidefinite Matrix?

• SDP vs. LP

• SDP Application on the MAX-CUT problem

• Convex Relaxations for AC-OPF
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Convex vs. Non-convex Problem

Convex Problem Non-convex problem

x

Cost
f(x)

x

Cost
f(x)

One global minimum Several local minima
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Several local minima: So what?

Example: Optimal Power Flow Problem
• Assume that the di↵erence in the
cost function of a local minimum
versus a global minimum is 10%

• The total electric energy cost in
the US is ⇡ 400 Billion$/year

• 10% amounts to 40 billion US$ in
economic losses per year

• Even 1% di↵erence is huge

• Convex problems guarantee that
we find a global minimum )
convexify the OPF problem

x

Cost
f(x)
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Convexifying the Optimal Power Flow problem
(OPF)

• Convex relaxations transform the
OPF to a convex Semi-Definite
Program (SDP)

• Under certain conditions, the
obtained solution is the global
optimum to the original OPF
problem1

x

Cost
f(x)

Convex Relaxation

1Javad Lavaei and Steven H Low. “Zero duality gap in optimal power flow problem”. In:
IEEE Transactions on Power Systems 27.1 (2012), pp. 92–107
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Outline of Lecture

• Motivation: Convex vs. Non-Convex Problem and SDP

• What is SDP?

• Numerical Example

• What is a Positive Semidefinite Matrix?

• SDP vs. LP

• SDP Application on the MAX-CUT problem

• Convex Relaxations for AC-OPF
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Semidefinite Programming

Semidefinite programming (SDP) is the most exciting development in

the mathematical programming in the 1990’s

2

• Between 2008-2012 we had the first formulations (and breakthroughs) for
a convexified AC-OPF problem.

2Robert M. Freund, Introduction to Mathematical Programming, MIT Lecture Notes, 2009
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What is Semidefinite Programming? (SDP)

• SDP is the“generalized” form of an LP (linear program)

Linear Programming Semidefinite Programming

min c

T · x

subject to:

ai · x = bi, i = 1, . . . ,m

x �0, x 2 R

n

minC •X :=

X

i

X

j

CijXij

subject to:

Ai •X = bi, i = 1, . . . ,m

X ⌫0

• LP: Optimization variables in the form of a vector x.

• SDP: Optim. variables in the form of a positive semidefinite matrix X.

Positive Semidefinite Matrix??
Ignore it for now. We will come back to it in a few slides.
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C •X :=

P
i

P
j

C

ij

X

ij

– What’s that?

C •X : “sum of elementwise multiplication”

min


c11 c12

c21 c22

�
•

X11 X12

X21 X22

�
min

C •X :=

X

i

X

j

CijXij

subject to:

A111 A112

A121 A122

�
•

X11 X12

X21 X22

�
= b1


A211 A212

A221 A222

�
•

X11 X12

X21 X22

�
= b1

subject to:

Ai •X = bi, i = 1, . . . ,m


X11 X12

X21 X22

�
⌫0

X ⌫0
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C •X :=

P
i

P
j

C

ij

X

ij

– What’s that?

C •X : “sum of elementwise multiplication”

min


c11 c12

c21 c22

�
•

X11 X12

X21 X22

�

subject to:

A111 A112

A121 A122

�
•

X11 X12

X21 X22

�
= b1


A211 A212

A221 A222

�
•

X11 X12

X21 X22

�
= b1


X11 X12

X21 X22

�
⌫0

min

c11X11 + c12X12 + c21X21 + c22X22

subject to:

A111X11 + A112X12 + A121X21 + A122X22 = b1

A211X11 + A212X12 + A221X21 + A222X22 = b2
X11 X12

X21 X22

�
⌫ 0
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SDP vs LP

Semidefinite Programming Linear Program

min

c11X11 + c12X12 + c21X21 + c22X22

subject to:

A111X11 + A112X12 + A121X21 + A122X22 = b1

A211X11 + A212X12 + A221X21 + A222X22 = b2
X11 X12

X21 X22

�
⌫ 0

In LP we have the optimiza-
tion variables in a vector:

X = [X11 X12 X21 X22]
T

min c

T ·X

subject to:

A1 ·X = b1

A2 ·X = b2

X11 � 0, X12 � 0,

X21 � 0, X22 � 0

• SDP looks very much like a LP!

• Only di↵erence: instead of each element of X to be positive, X must be
a positive semidefinite matrix!
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Numerical Example

• Assume X is a 3⇥ 3 matrix.

A1 =

2

4
1 0 1

1 3 7

1 7 5

3

5
A2 =

2

4
0 2 8

2 6 0

8 0 4

3

5
C =

2

4
1 2 3

2 9 0

3 0 7

3

5

b1 = 11b2 = 19

Formulate the optimization problems w.r.t. to the elements of matrix
X, i.e. linear equations w.r.t. X11, X12, etc.

Answer in p.6 of R. Freund, Introduction to Semidefinite Programming, MIT Lecture Notes, 2009.
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-251j-introduction-to-mathematical-programming-fall-2009/readings/MIT6_251JF09_

SDP.pdf
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Outline of Lecture

• Motivation: Convex vs. Non-Convex Problem and SDP

• What is SDP?

• Numerical Example

• What is a Positive Semidefinite Matrix?

• SDP vs. LP

• SDP Application on the MAX-CUT problem

• Convex Relaxations for AC-OPF
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What is a Positive Semidefinite Matrix P?

•
P must be symmetric

P is a positive semidefinite matrix i↵:

•
x

T
Px � 0, for any non-zero vector x

or

•
eig(P ) � 0 for all eigenvalues of P

or

• all principal minors are non-negative
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What are Principal Minors?

Principal minors are the determinants of submatrices of P

P =


p11 p12

p21 p22

�
) first order: p22 second order:

����
p11 p12

p21 p22

����

P =

2

4
p11 p12 p13

p21 p22 p23

p31 p32 p33

3

5 )

first order: p22
second order:
����
p22 p23

p32 p33

����

����
p21 p23

p31 p33

����

����
p21 p22

p31 p32

����

third order:

������

p11 p12 p13

p21 p22 p23

p31 p32 p33

������
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Outline of Lecture

• Motivation: Convex vs. Non-Convex Problem and SDP

• What is SDP?

• Numerical Example

• What is a Positive Semidefinite Matrix?

• SDP vs. LP

• SDP Application on the MAX-CUT problem

• Convex Relaxations for AC-OPF
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SDP vs LP

Does it make such a di↵erence if we optimize over a positive
semidefinite X instead of having all individual elements of this matrix

positive?

Yes!
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SDP vs LP variables: Example

X =


x2 x1

x1 1

�
⌫ 0

When is P positive semidefinite?

For X to be positive semidefinite, it must be:

•
X symmetric ! OK!

• first order princ.minor positive: 1 > 0 ! OK!

• second order princ.minor positive: x2 � x

2
1 � 0
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Example: Feasible space of SDP vs LP variables

SDP LP

X =


x2 x1

x1 1

�
⌫ 0 ) x2 � x

2
1 � 0

x1 � 0

x2 � 0

x2

x1

x2

x1

• In SDP can express quadratic constraints, e.g. x21 or x1x2

• In general, in SDP we allow the variables to“move” in a larger space !
here, x1 can take negative values

• SDP applies to a larger family of problems ! LP special case of SDP
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LP as a special case of SDP

min


c11 c12

c21 c22

�
•

X11 X12

X21 X22

�

subject to:

A111 A112

A121 A122

�
•

X11 X12

X21 X22

�
= b1


A211 A212

A221 A222

�
•

X11 X12

X21 X22

�
= b1


X11 X12

X21 X22

�
⌫0

How should C,A1, A2 look like so that our
SDP problem become an LP?

Assume that the LP will only have

two variables.

Answer: If C,A1, A2 are diagonal, then
our SDP problem is actually an LP!
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Outline of Lecture

• Motivation: Convex vs. Non-Convex Problem and SDP

• What is SDP?

• Numerical Example

• What is a Positive Semidefinite Matrix?

• SDP vs. LP

• SDP Application on the MAX-CUT problem

• Convex Relaxations for AC-OPF
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SDP Application – Preliminaries:
Rank of a Matrix

• Assume matrix A with dimensions M ⇥N = 5⇥ 3

• 0  rank(A)  min(M,N)

• If all rows and columns are linearly independent, then
rank(A) = min(M,N)

• If all rows and columns are linearly independent, how much is rank(A),
if A has dimensions 5⇥ 3?

• It holds: rank(AB)  min(rank(A), rank(B)

•
B is a vector with dimension N ⇥ 1

• How much is rank(B)?
• How much is rank(AB)?

•
W = XX

T , where X is a vector. How much is rank(W )?
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SDP Application: MAX-CUT Problem

• Split the graph in two subgraphs: S and S

• Goal: maximize the total weight of the
edges between S and S

• NP-complete problem: no fast/e�cient
solution is known

• Applications:

• Data clustering: Split the data in two
groups. Nearby data get clustered
together. Data far away in opposite
groups.

• Maps: Identify the“borders”between
two areas.

• etc.

A

B

C

D

E

F

5

3

4

3

3

3

3

5

8
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SDP Application: MAX-CUT Problem

What is the max-cut solution for this
graph?

Split the graph in two subgraphs, so that
the sum of the edge weights between the

graphs becomes maximum.

A

B

C

D

E

F

5

3

4

3

3

3

3

5

8
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SDP Application: MAX-CUT Problem

max

1

4

nX

i=1

nX

j=1

wij(1� xixj)

subject to:

xj 2 {�1, 1}, j = 1, . . . , n.

• Let Y = xx

T , where Yij = xixj

A

B

C

D

E

F

5

3

4

3

3

3

3

5

8
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Y = xx

T

Y =

2

4
x1

x2

x3

3

5 ⇥
x1 x2 x3

⇤
=

2

4
x1x1 x1x2 x1x3

x2x1 x2x2 x2x3

x3x1 x3x2 x3x3

3

5

•
Y captures all the squares, e.g. x21, in the diagonal, and all the possible
products between two vector elements in the o↵-diagonals.

•
Y ⌫ 0 by construction

•
Y is a rank-1 matrix
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SDP Application: MAX-CUT Problem

max

1

4

nX

i=1

nX

j=1

wij(1� xixj)

subject to:

xj 2 {�1, 1}, j = 1, . . . , n.

• Let Y = xx

T , where Yij = xixj . Then:

max

1

4

nX

i=1

nX

j=1

wij �W • Y

subject to:

xj 2 {�1, 1}, j = 1, . . . , n

Y = xx

T

A

B

C

D

E

F

5

3

4

3

3

3

3

5

8
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SDP Application: MAX-CUT Problem

max

1

4

nX

i=1

nX

j=1

wij �W • Y

subject to:

xj 2 {�1, 1}, j = 1, . . . , n

Y = xx

T

+

max

1

4

nX

i=1

nX

j=1

wij �W • Y

Yjj = 1, j = 1, . . . , n

Y = xx

T

A

B

C

D

E

F

5

3

4

3

3

3

3

5

8
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SDP Application: MAX-CUT Problem

max

1

4

nX

i=1

nX

j=1

wij �W • Y

Yjj = 1, j = 1, . . . , n

Y = xx

T

+

max

1

4

nX

i=1

nX

j=1

wij �W • Y

Yjj = 1, j = 1, . . . , n

Y ⌫ 0

rank(Y ) = 1
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SDP Application: MAX-CUT Problem

max

1

4

nX

i=1

nX

j=1

wij �W • Y

Yjj = 1, j = 1, . . . , n

Y = xx

T

+

max

1

4

nX

i=1

nX

j=1

wij �W • Y

Yjj = 1, j = 1, . . . , n

Y ⌫ 0

(((((((rank(Y ) = 1 Relax the problem!

A

B

C

D

E

F

5

3

4

3

3

3

3

5

8
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SDP Application: MAX-CUT Problem

EXACT: max

1

4

nX

i=1

nX

j=1

wij �W • Y

Yjj = 1, j = 1, . . . , n

Y = xx

T

+

RELAX: max

1

4

nX

i=1

nX

j=1

wij �W • Y

Yjj = 1, j = 1, . . . , n

Y ⌫ 0

(((((((rank(Y ) = 1

• For the objective functions,
it holds EXACT  RELAX

• The RELAX problem is an
SDP problem!

• If the Y that we find
happens also to be rank-1,
then RELAX=EXACT!

36 DTU Electrical Engineering Optimization in modern power systems Jan 13, 2017



SDP Application: MAX-CUT Problem

x

f(x)
f(x⇤)  f̃(Y ⇤)

x

f(x)

f(x⇤) = f̃(Y ⇤)

rank(Y ⇤) = 1

EXACT: Y = xx

T

+
RELAX: Y ⌫ 0

(((((((rank(Y ) = 1

• For the objective functions,
it holds EXACT  RELAX

• The RELAX problem is an
SDP problem!

• If Y ⇤ happens also to be
rank-1, then EXACT =
RELAX!
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Minimization vs. Maximization

x

f(x) f̃(Y ⇤)  f(x⇤)

x

f(x)

f(x⇤) = f̃(Y ⇤)

rank(Y ⇤) = 1

x

f(x)
f(x⇤)  f̃(Y ⇤)

x

f(x)

f(x⇤) = f̃(Y ⇤)

rank(Y ⇤) = 1
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Outline of Lecture

• Motivation: Convex vs. Non-Convex Problem and SDP

• What is SDP?

• Numerical Example

• What is a Positive Semidefinite Matrix?

• SDP vs. LP

• SDP Application on the MAX-CUT problem

• Convex Relaxations for AC-OPF
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Convex relaxations for AC-OPF

• In the AC-OPF we follow exactly the same procedure as in MAX-CUT!

• The power is a quadratic function of the voltages, i.e. a function of V 2
i

and ViVj

• We define a positive semidefinite matrix W the includes all the possible
combinations of ViVj and V

2
i .

• For W it holds: W ⌫ 0 and rank(W ) = 1

• We drop the rank-1 constraint ! problem is now convex!

• We optimize the relaxed problem for W , and we pray for rank(Wopt) = 1.
If yes ! global optimum for the AC-OPF

• If rank(Wopt) 6= 1 ! infeasible, i.e. Wopt has no physical meaning

• It has been shown that in most power systems the obtained Wopt is
rank-1

• Still an open research topic!
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Convex relaxations for AC-OPF

V 1 V 2

S1 = V1Y
⇤
busV

⇤

= V1(Y11V1 + Y12V2)
⇤

= Y

⇤
11V1V

⇤
1 + Y

⇤
12V1V

⇤
2

S2 = Y

⇤
22V2V

⇤
2 + Y

⇤
21V2V

⇤
1

• I define:

W = V V

H
=


V1

V2

� ⇥
V

⇤
1 V

⇤
2

⇤
=


V1V

⇤
1 V1V

⇤
2

V2V
⇤
1 V2V

⇤
2

�

It holds:

EXACT: W ⌫ 0

rank(W) = 1

RELAX: W ⌫ 0

(((((((rank(W) = 1
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Wrap-up

• The SDP is a generalization of the LP

• The main di↵erence between the formulation of the SDP and the LP, is
that the SDP requires the variables to form a positive semidefinite
matrix, while the LP requires all variables to be larger than zero.

• The SDP formulation allows for more“freedom” in the variables.

• SDP can model quadratic constraints.
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Convex relaxations with SDP

• The initial problem has pairwise products of variables and square values,
i.e, xixj , x2i .

• Formulate a matrix W = xx

T . For W it holds W ⌫ 0 and rank(W ) = 1.

• rank(W ) = 1 is not convex ! drop it!

• The rest of the (relaxed) problem convex!

• Relaxed problem: contains all feasible solutions of the original problem,
plus many more.

• Solve for Wopt and hope that rank(W ) = 1 ! then our solution is
feasible for the original problem.

• If yes, then you just found the global optimum!

• Exactly this procedure is followed in the SDP formulation for the AC-OPF
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