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Lecture 4: Lagrangian and Nodal Prices

Spyros Chatzivasileiadis

Some slides of this lecture have been in-
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timization in Energy Networks, Carnegie
Mellon University, USA, 2015.



Groups and Topics for Assignment 2

1 Primal-dual interior-point method:

2 Simplex method:

3 Newton’s method for optimization with equality constraints:

4 Gradient descent method for unconstrained optimization:

• Peer-review groups

• #1 with #3
• #2 with #4
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The Goals for Today!

• Review of Day 3

• Questions and Clarifications on Assignments

• Lagrangian for Inequality Constrained Optimization

• Extracting the Lagrangian Multipliers (= nodal prices) for the DC-OPF
problem
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Reviewing Day 3 in Groups!

• For 10 minutes discuss with the
person sitting next to you about:

• Three main points we discussed
in yesterday’s lecture

• One topic or concept that is not
so clear to you and you would
like to hear again about it
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Points you would like to discuss?

Questions about the Assignments?
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Notes on Assigment 1

• The line flow constraints of the DC-OPF must be considered for both
directions
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Convex and Concave Functions

• Convex function: a line
connecting two points must lie
above the function

x

f(x)

• Concave function: a line
connecting two points must lie
below the function

x

f(x)

• Ideally, we want to minimize convex functions and maximize concave
functions
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Formulating an optimization problem

Example: James, a CMU student, opens a new sandwich shop on CMU
campus to earn some money. He o↵ers two types of sandwiches, tuna
and chicken. His costs for the tuna sandwich are $4, his profit is $3.5
and it takes him 8 minutes to make one. The costs for the chicken
sandwich are $6, his profit is $3 and it takes him 6 minutes to make
one. Besides studying, he is able to spend 3 hours per day preparing
sandwiches and he has a budget of $120 per day. The university
regulations say that he has to sell at least 5 sandwiches of each type.

• Assuming that James can sell all his sandwiches, write down the
optimization problem to find the number of sandwiches of each type
which maximize his profit.

• Answer: 15 tuna sandwiches, 10 chicken sandwiches
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Formulating an optimization problem

Example: James, a CMU student, opens a new sandwich shop on
CMU campus to earn some money. He o↵ers two types of sandwiches,
tuna and chicken...

• Assuming that James can sell all his sandwiches, write down the
optimization problem to find the number of sandwiches of each type
which maximize his profit.

• Answer: 15 tuna sandwiches, 10 chicken sandwiches

• Note that this is normally a mixed integer linear problem (MILP). In our
case, we relax our problem and assume that the optimization variables
are continuous variables. This allows us to solve it with linprog. We
were“lucky”and the solver returned integers as the optimal result. If we
did not obtain integers, our solution would have been infeasible for the
original problem. Then we would need to use di↵erent methods to solve
it, e.g. using the intlinprog from the Matlab Optimization Toolbox.
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Equality Constrained Optimization

• Example:

min
x

x

2
1 + x

2
2

s.t.� x1 � x2 + 4 = 0

• Find the solution to this problem using KKT conditions.
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Inequality Constrained Optimization

• Find a solution to:

min
x

f0(x)

s.t. f

i

(x) = 0 for i=1,. . . ,m

@f0(x)

@x

6= 0 in feasible region
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Binding Constraint

• Constraint binding, i.e. f
i

(x⇤) = 0

rf0(x) +
mX

i=1

�

i

f

i

(x)

f

i

 0 for i = 1, . . . ,m

• gradients of objective function and of
constraint are in opposite directions in
optimal point

) �

i

> 0

• Sensitivity: �
i

= ��f0(x)

�f

i

(x)
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Non-binding constraint

• Constraint non-binding, i.e. f
i

(x⇤) < 0

rf0(x) +
mX

i=1

�

i

f

i

(x)

f

i

 0 for i = 1, . . . ,m

• gradient of objective function is zero,
i.e. rf(x) = 0

) �

i

= 0

• The Lagrange multiplier is:

•
>0, for binding inequality constraints

• =0, for non-binding inequality constraints
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KKTs for Inequality Constrained Optimization

• Lagrange function

L = f0(x) +
mX

i=1

�

i

f

i

(x)

• Minimize Lagrange function

@L

@x

= 0 ) @f(x)

@x

+
mX

i=1

�

i

@f

i

(x)

@x

= 0

@L

@�

i

= 0 ) f

i

(x)  0 for i = 1, . . . ,m

�

i

f

i

(x) = 0 for i+ 1, . . . ,m

�

i

� 0

Solution can be
found by checking
combinations of
binding and non-
binding constraints
) use solution
algorithms
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KKTs for Constrained Optimization

• Minimize Lagrange function:

L = f0(x) +
mX

i=1

�

i

f

i

(x) +
pX

i=1

⌫

i

h

i

(x)

• The Karush-Kuhn-Tacker first order or necessary optimality conditions:

@L

@x

= 0 ) @f(x)

@x

+
mX

i=1

�

i

@f

i

(x)

@x

+
pX

i=1

⌫

i

@h

i

(x)

@x

= 0

@L

@�

i

= 0 ) f

i

(x)  0 for i = 1, . . . ,m

@L

@⌫

i

= 0 ) h

i

(x) = 0 for i = 1, . . . , p

�

i

f

i

(x) = 0 for i+ 1, . . . ,m

�

i

� 0
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Costrained Optimization: Example

min
x1,x2

(x1 � 3)2 + (x2 � 2)2

subject to:

2x1 + x2 = 8

x1 + x2  7

x1 � 0.25x2
2  0

• Write down the KKT conditions for this problem.
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Constrained Optimization: Graphical Solution

Example:

min
x1,x2

(x1 � 3)2 + (x2 � 2)2

subject to:

2x1 + x2 = 8

x1 + x2  7

x1 � 0.25x2
2  0

x1 � 0

x2 � 0
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Mathematical Formulations: Summary

Unconstrained Optimization min
x

f(x)

Equality Constrained Optimization min
x

f(x)

h

i

(x) = 0 for i = 1, . . . , p

Inequality Constrained Optimiza-
tion

min
x

f(x)

f

i

(x)  0 for i = 1, . . . ,m

General Constrained Optimization
min
x

f(x)

f

i

(x)  0 for i = 1, . . . , p

h

i

(x) = 0 for i = 1, . . . ,m
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Convex Optimization

• The optimization problem

min
x

f(x)

f

i

(x)  0 for i = 1, . . . , p

h

i

(x) = 0 for i = 1, . . . ,m

is convex if:

• the objective function f(x) is convex

• the inequality constraints f
i

(x) are convex

• the equality constraints h
i

(x) are linear

If the problem is convex, there is a single optimum, which is also the

global optimum!
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Solution Types for Linear Optimization
Unique Solution Unbounded Solution

Infinitely many solutions No solution
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DC-OPF based on PTDF

min

NPGX

i=1

c

i

P

G,i

,

subject to:
NPGX

i=1

P

G,i

�
NPLX

i=1

P

L,i

= 0

�F
L

 PTDF · (P
G

�P
L

)  F
L

0  P
G

 P
G,max

21 DTU Electrical Engineering Optimization in modern power systems Jan 5, 2017



Lagrangian of the DC-OPF

L(P
G

, ⌫,�, µ) =

NPGX

i=1

c

i

P

G,i

+ ⌫ ·

0

@
NPGX

i=1

P

G,i

�
NPLX

i=1

P

L,i

1

A

+
NLX

i=1

�

+
i

· [PTDF
i

· (P
G

�P
L

)� F

L,i

]

+
NLX

i=1

�

�
i

· [�PTDF
i

· (P
G

�P
L

)� F

L,i

]

+

NPGX

i=1

µ

+
i

· (P
G,i

� P

G,i,max

) +

NPGX

i=1

µ

�
i

· (�P

G,i

)
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Test System

• Assume a 3-bus system with 3 generators, and 1 load on bus 3

• We assume an auxilliary variable ⇠3 that represents very small changes of
the load in Bus 3. We assume ⇠3 = 0.

• Then it is P̂
L

= P

L

+ ⌅, where ⌅ = [0 0 ⇠3]T .

1 2

3
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Lagrangian of the DC-OPF with ⌅

L(P
G

, ⌫,�, µ,⌅) =

NPGX

i=1

c

i

P

G,i

+ ⌫ ·

0

@
NPGX

i=1

P

G,i

�
NPLX

i=1

P

L,i

� ⇠

i

1

A

+
NLX

i=1

�

+
i

· [PTDF
i

· (P
G

�P
L

� ⌅)� F

L,i

]

+
NLX

i=1

�

�
i

· [�PTDF
i

· (P
G

�P
L

� ⌅)� F

L,i

]

+

NPGX

i=1

µ

+
i

· (P
G,i

� P

G,i,max

) +

NPGX

i=1

µ

�
i

· (�P

G,i

).
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Lagrangian of DC-OPF for the 3-bus system

• To save space in this slide: K
i

⌘ PTDF

i

L(P
G

, ⌫,�, µ, ⇠3) =

NPGX

i=1

c

i

P

G,i

+ ⌫ ·

0

@
NPGX

i=1

P

G,i

�
NPLX

i=1

P

L,i

� ⇠3

1

A

+
NLX

i=1

�

+
i

· [K
i,1 · PG,1 +K

i,2 · PG,2 +K

i,3 · (PG,3 � P

L,3 � ⇠3)� F

L,i

]

+
NLX

i=1

�

�
i

· [�K

i,1 · PG,1 �K

i,2 · PG,2 �K

i,3 · (PG,3 � P

L,3 � ⇠3)� F

L,i

]

+

NPGX

i=1

µ

+
i

· (P
G,i

� P

G,i,max

) +

NPGX

i=1

µ

�
i

· (�P

G,i

).
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KKTs for the DC-OPF: No congestion

• No congestion ) all �
i

= 0

• One marginal generator: only one generator has both µ

+
i

= 0 and µ

�
i

= 0

• Assume G2 is marginal; P
G1 = P

G1,max

; P
G3 = 0.

@L
@P

G,i

= 0, for all i 2 N

PG

c1 + ⌫ + µ

+
1 = 0

c2 + ⌫ = 0

c3 + ⌫ + µ

�
3 = 0

Marginal change in the cost func-
tion for a marginal change in load:

LMP3 =
@L
@⇠3

= �⌫

Attention! ⇠3 does not exist in the optimization problem and is not an
optimization variable. We do not need to derive any KKT conditions

w.r.t. ⇠3, e.g.
@L

@⇠3
= 0.

⇠3 is just an auxilliary variable. It helps us“represent” the marginal
change in the load of bus 3. @L

@⇠3
quantifies its e↵ect on the Lagrangian.
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i
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• One marginal generator: only one generator has both µ

+
i

= 0 and µ

�
i

= 0
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G,i

= 0, for all i 2 N

PG

c1 + ⌫ + µ

+
1 = 0
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�
3 = 0

Marginal change in the cost func-
tion for a marginal change in load:

LMP3 =
@L
@⇠3

= �⌫

LMP3 = �⌫ = c2: nodal price on bus 3!
How much is the LMP on the other buses?
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KKTs for the DC-OPF: One congested line

• Assume that line 1-3 gets congested in the direction 1 ! 3 ) �

+
13 6= 0

• Now G2 and G3 are both marginal gens; P
G1 = P

G1,max

.

@L
@P

G,i

= 0, for all i 2 N

PG

c1 + ⌫ + µ

+
1 + �

+
13PTDF13,1 = 0

c2 + ⌫ + �

+
13PTDF13,2 = 0

c3 + ⌫ + �

+
13PTDF13,3 = 0

Marginal change in the cost func-
tion for a marginal change in load:

LMP3 =
@L
@⇠3

= �⌫��

+
13PTDF13,3

To find LMP3 I need ⌫ and �

+
13

How do I find ⌫ and �

+
13?
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KKTs for the DC-OPF: One congested line

• Solve the linear system with 2 equations and 2 unknowns: ⌫ and �

+
13

c2 + ⌫ + �

+
13PTDF13,2 = 0

c3 + ⌫ + �

+
13PTDF13,3 = 0

————————————————————

• What can we say about the LMPs on di↵erent buses?

LMP

i

= �⌫ � �

+
13PTDF13,i

• If there is a congestion, the LMPs are no longer the same on every bus.
They are dependent on the congestion!
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