
Optimization in modern power systems

Lecture 5: Constrained Optimization, LMPs, and AC-OPF

Spyros Chatzivasileiadis



The Goals for Today!

• Review of Day 4

• Questions and Clarifications on Assignments

• Derivation of LMPs

• AC-OPF

•
Ybus and Yline

• From the AC to the DC power flow equations
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Reviewing Day 4 in Groups!

• For 10 minutes discuss with the
person sitting next to you about:

• Three main points we discussed
in yesterday’s lecture

• One topic or concept that is not
so clear to you and you would
like to hear again about it
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Points you would like to discuss?

Questions about the Assignments?
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Notes on Assigment 1

• The built-in Matpower solver MIPS cannot find a solution for
Case Study 5. Try a di↵erent solver:

• e.g. MOSEK
• other ?
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Constrained Optimization: Example

min

x1,x2

(x1 � 3)

2
+ (x2 � 2)

2

subject to:

2x1 + x2 = 8

x1 + x2  7

x1 � 0.25x

2
2  0

• Write down the KKT conditions for this problem.
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Constrained Optimization: Graphical Solution

Example:

min

x1,x2

(x1 � 3)

2
+ (x2 � 2)

2

subject to:

2x1 + x2 = 8

x1 + x2  7

x1 � 0.25x

2
2  0

x1 � 0

x2 � 0

Figure taken from: Gabriela Hug, Lecture slides for class 18-879 M: Optimization in Energy Net-
works, Carnegie Mellon University, USA, 2015.
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DC-OPF based on PTDF

min

NPGX

i=1

c

i

P

G,i

,

subject to:
NPGX

i=1

P

G,i

�
NPLX

i=1

P

L,i

= 0

�F
L

 PTDF · (P
G

�P
L

)  F
L

0  P
G

 P
G,max
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Lagrangian of the DC-OPF

L(P
G

, ⌫,�, µ) =

NPGX

i=1

c

i

P

G,i

+ ⌫ ·

0

@
NPGX

i=1

P

G,i

�
NPLX

i=1

P

L,i

1

A

+

NLX

i=1

�

+
i

· [PTDF
i

· (P
G

�P
L

)� F

L,i

]

+

NLX

i=1

�

�
i

· [�PTDF
i

· (P
G

�P
L

)� F

L,i

]

+

NPGX

i=1

µ

+
i

· (P
G,i

� P

G,i,max

) +

NPGX

i=1

µ

�
i

· (�P

G,i

)
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Test System

• Assume a 3-bus system with 3 generators, and 1 load on bus 3

• We assume an auxilliary variable ⇠3 that represents very small changes of
the load in Bus 3. We assume ⇠3 = 0.

• Then it is P̂
L

= P

L

+ ⌅, where ⌅ = [0 0 ⇠3]T .

1 2

3
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Lagrangian of the DC-OPF with ⌅

L(P
G

, ⌫,�, µ,⌅) =

NPGX

i=1

c

i

P
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+ ⌫ ·

0
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P
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P
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i

1

A

+

NLX
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�

+
i
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i
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G

�P
L

� ⌅)� F

L,i

]

+

NLX

i=1

�

�
i

· [�PTDF
i

· (P
G

�P
L

� ⌅)� F

L,i

]

+

NPGX

i=1

µ

+
i

· (P
G,i

� P

G,i,max

) +

NPGX

i=1

µ

�
i

· (�P

G,i

).
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Lagrangian of DC-OPF for the 3-bus system

• To save space in this slide: K
i

⌘ PTDF

i

L(P
G

, ⌫,�, µ, ⇠3) =

NPGX

i=1

c

i

P

G,i

+ ⌫ ·

0

@
NPGX

i=1

P

G,i

�
NPLX

i=1

P

L,i

� ⇠3

1

A

+

NLX

i=1

�

+
i

· [K
i,1 · PG,1 +K

i,2 · PG,2 +K

i,3 · (PG,3 � P

L,3 � ⇠3)� F

L,i

]

+

NLX

i=1

�

�
i

· [�K

i,1 · PG,1 �K

i,2 · PG,2 �K

i,3 · (PG,3 � P

L,3 � ⇠3)� F

L,i

]

+

NPGX

i=1

µ

+
i

· (P
G,i

� P

G,i,max

) +

NPGX

i=1

µ

�
i
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KKTs for the DC-OPF: No congestion

• No congestion ) all �
i

= 0

• One marginal generator: only one generator has both µ

+
i

= 0 and µ

�
i

= 0

• Assume G2 is marginal; P
G1 = P

G1,max

; P
G3 = 0.

@L
@P

G,i

= 0, for all i 2 N

PG

c1 + ⌫ + µ

+
1 = 0

c2 + ⌫ = 0

c3 + ⌫ + µ

�
3 = 0

Marginal change in the cost func-
tion for a marginal change in load:

LMP3 =
@L
@⇠3

= �⌫

Attention! ⇠3 does not exist in the optimization problem and is not an
optimization variable. We do not need to derive any KKT conditions

w.r.t. ⇠3, e.g.
@L

@⇠3
= 0.

⇠3 is just an auxilliary variable. It helps us“represent” the marginal
change in the load of bus 3. @L

@⇠3
quantifies its e↵ect on the Lagrangian.
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KKTs for the DC-OPF: No congestion

• No congestion ) all �
i

= 0

• One marginal generator: only one generator has both µ

+
i

= 0 and µ

�
i

= 0

• Assume G2 is marginal; P
G1 = P

G1,max

; P
G3 = 0.

@L
@P

G,i

= 0, for all i 2 N

PG

c1 + ⌫ + µ

+
1 = 0

c2 + ⌫ = 0

c3 + ⌫ + µ

�
3 = 0

Marginal change in the cost func-
tion for a marginal change in load:

LMP3 =
@L
@⇠3

= �⌫

LMP3 = �⌫ = c2: nodal price on bus 3!
How much is the LMP on the other buses?
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KKTs for the DC-OPF: One congested line

• Assume that line 1-3 gets congested in the direction 1 ! 3 ) �

+
13 6= 0

• Now G2 and G3 are both marginal gens; P
G1 = P

G1,max

.

@L
@P

G,i

= 0, for all i 2 N

PG

c1 + ⌫ + µ

+
1 + �

+
13PTDF13,1 = 0

c2 + ⌫ + �

+
13PTDF13,2 = 0

c3 + ⌫ + �

+
13PTDF13,3 = 0

Marginal change in the cost func-
tion for a marginal change in load:

LMP3 =
@L
@⇠3

= �⌫��

+
13PTDF13,3

To find LMP3 I need ⌫ and �

+
13

How do I find ⌫ and �

+
13?
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KKTs for the DC-OPF: One congested line

• Solve the linear system with 2 equations and 2 unknowns: ⌫ and �

+
13

c2 + ⌫ + �

+
13PTDF13,2 = 0

c3 + ⌫ + �

+
13PTDF13,3 = 0

• What can we say about the LMPs on di↵erent buses?

LMP

i

= �⌫ � �

+
13PTDF13,i

• If there is a congestion, the LMPs are no longer the same on every bus.
They are dependent on the congestion!
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AC-OPF

• Minimize

Costs, Line Losses, other?

• subject to:

AC Power Flow equations

Line Flow Constraints

Generator Active Power Limits

Generator Reactive Power Limits

Voltage Magnitude Limits

(Voltage Angle limits to improve solvability)

(maybe other equipment constraints)

Line Current Limits

Apparent Power Flow limits

Active Power Flow limits

• Optimization vector: [P Q V ✓]T
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AC-OPF1

obj.function min c

T

P

G

AC flow S

G

� S

L

= diag(V )Y

⇤
busV

⇤

Line Current |Y line,i!j

V |  I

line,max

|Y line,j!i

V |  I

line,max

or Apparent Flow |V
i

Y

⇤
line,i!j,i-rowV

⇤|  S

i!j,max

|V
j

Y

⇤
line,j!i,j-rowV

⇤|  S

j!i,max

Gen. Active Power 0  P

G

 P

G,max

Gen. Reactive Power �Q

G,max

 Q

G

 Q

G,max

Voltage Magnituge V

min

 V  V

max

Voltage Magnituge V

min

 V  V

max

Voltage Angle ✓

min

 ✓  ✓

max

1All shown variables are vectors or matrices. The bar above a variable denotes complex
numbers. (·)⇤ denotes the complex conjugate. To simplify notation, the bar denoting a complex
number is dropped in the following slides. Attention! The current flow constraints are defined as
vectors, i.e. for all lines. The apparent power line constraints are defined per line.
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Current flow along a line

V

i

V

j

R

ij

+ jX

ij

jB

ij

2

jB

ij

2

⇡-model of the line

It is:

y

ij

=
1

R

ij

+ jX

ij

y

sh,i

= j

B

ij

2
+ other shunt

elements connected to that bus

i ! j :

I

i!j

= y

sh,i

V

i

+ y

ij

(V

i

� V

j

) ) I

i!j

=

⇥
y

sh,i

+ y

ij

�y

ij

⇤ 
V

i

V

j

�

j ! i :

I

j!i

= y

sh,j

V

j

+ y

ij

(V

j

� V

i

) ) I

j!i

=

⇥
�y

ij

y

sh,j

+ y

ij

⇤ 
V

i

V

j

�
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Line Admittance Matrix Yline

• Yline is an L⇥N matrix, where L is the number of lines and N is the
number of nodes

• if row k corresponds to line i� j:

•
Yline,ki = y

sh,i

+ y

ij

•
Yline,kj = �y

ij

•
y

ij

=
1

R

ij

+ jX

ij

is the admittance of line ij

•
y

sh,i

is the shunt capacitance jB

ij

/2 of the ⇡-model of the line

• We must create two Yline matrices. One for i ! j and one for j ! i

20 DTU Electrical Engineering Optimization in modern power systems Jan 6, 2017



Bus Admittance Matrix Ybus

S

i

= V

i

I

⇤
i

I

i

=

X

k

I

ik

,where k are all the buses connected to bus i

Example: Assume there is a line between nodes i�m, and i� n. It is:

I

i

= I

im

+ I

in

= (y

i!m

sh,i

+ y

im

)V

i

� y

im

V

m

+ (y

i!n

sh,i

+ y

in

)V

i

� y

in

V

n

= (y

i!m

sh,i

+ y

im

+ y

i!n

sh,i

+ y

in

)V

i

� y

im

V

m

� y

in

V

n

I

i

= [y

sh,im

+ y

im

+ y

sh,in

+ y

in| {z }
Ybus,ii

�y

im| {z }
Ybus,im

�y

in|{z}
Ybus,in

][V

i

V

m

V

n

]

T
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Bus Admittance Matrix Ybus

• Ybus is an N ⇥N matrix, where N is the number of nodes

• diagonal elements: Ybus,ii = y

sh,i

+
P

k

y

ik

, where k are all the buses
connected to bus i

• o↵-diagonal elements:

•
Ybus,ij = �y

ij

if nodes i and j are connected by a line2

•
Ybus,ij = 0 if nodes i and j are not connected

•
y

ij

=
1

R

ij

+ jX

ij

is the admittance of line ij

•
y

sh,i

are all shunt elements connected to bus i, including the shunt
capacitance of the ⇡-model of the line

2If there are more than one lines connecting the same nodes, then they must all be added to
Ybus,ij , Ybus,ii, Ybus,jj .
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AC Power Flow Equations

S

i

= V

i

I

⇤
i

= V

i

Y

⇤
busV

⇤

For all buses S = [S1 . . . SN

]

T :

Sgen � Sload = diag(V )Y

⇤
busV

⇤
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From AC to DC Power Flow Equations

• The power flow along a line is:

S

ij

= V

i

I

⇤
ij

= V

i

(y

⇤
sh,i

V

⇤
i

+ y

⇤
ij

(V

⇤
i

� V

⇤
j

))

• Assume a negligible shunt conductance: g
sh,ij

= 0 ) y

sh,i

= jb

sh,i

.

• Given that R << X in transmission systems, for the DC power flow we

assume that z
ij

= r

ij

+ jx

ij

⇡ jx

ij

. Then y

ij

= �j

1

x

ij

.

• Assume: V
i

= V

i

\0 and V

j

= V

j

\�, with � = ✓

j

� ✓

i

.

I

⇤
ij

=� jb

sh,i

V

i

+ j

1

x

ij

(V

i

� (V

j

cos � � jV

j

sin �))

=� jb

sh,i

V

i

+ j

1

x

ij

V

i

� j

1

x

ij

V

j

cos � � 1

x

ij

V

j

sin �
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From AC to DC Power Flow Equations (cont.)

• Since V

i

is a real number, it is:

P

ij

=<{S
ij

} = V

i

<{I⇤
ij

} = � 1

x

ij

V

i

V

j

sin �

• With � = ✓

j

� ✓

i

, it is:

P

ij

=

1

x

ij

V

i

V

j

sin(✓

i

� ✓

j

)

• We further make the assumptions that:

•
V

i

, V
j

are constant and equal to 1 p.u.
• sin ✓ ⇡ ✓, ✓ must be in rad

Then

P

ij

=

1

x

ij

(✓

i

� ✓

j

)
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