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The Goals for Today!
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e Review of Day 7
e Questions and Clarifications on Assignments
e Duality

e Duality in LP
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Schedule for the rest of the course

e Tomorrow: Lecture 9am-10am only

e Fri, Jan 15: Convex AC-OPF: Semidefinite programming

e Mon, Jan 16: Peer-review of Assignment 2 (R113 & R153 booked)

e Tue, Jan 17: Repetition — prepare questions!

e Wed, Jan 18: Presentation of Assignment 2

e Thu, Jan 19: no lecture, 1pm-3pm questions in this room (B325-R113)
e Fri, Jan 20: Exam

e Mon, Jan 23: Deadline for Assignments 1 and 3
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Reviewing Day 7 in Groups!

e For 10 minutes discuss with the
person sitting next to you about:

e Three main points we discussed
in yesterday's lecture

¢ One topic or concept that is not
so clear to you and you would
like to hear again about it
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Points you would like to discuss?

Questions about the Assignments?
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Dual Problem

With the help of the Lagrangian function and the Lagrangian
multipliers, we can define and solve a dual optimization problem.

e Primal problem: our original problem
e Dual problem: the problem we formulate with the help of the Lagrangian

e Dual variables = Lagrangian multipliers
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Why do we care about the dual?

Advantages of the dual problem:

e it might be easier to solve, e.g. less constraints

® always concave — convex optimization

® always gives a lower bound to the objective value of our original problem

o for certain set of problems, e.g. convex — exact

e Strong duality — The dual problem of convex primal problems usually
results to the same solution as the primal problem
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The dual function is concave

zeD

g\, v) =inf L(x,\,v) = égjfj fo(z) + Z Aifi(z) + Z vihi(x)

e inf,p stands for the minimum value of the Lagrangian over z: for
Ae R™MveRP

® g is always concave: Lagrangian is linear with respect to A, v and inf
preserves concavity

e The dual function is concave, even if fy, f;, h; are
non-convex/non-concave.
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The dual function is concave: Example

min w% + x%

subject to:
T+ X9 — 4=0

Find the dual function g(v) = inf,ecp L(z,v)
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The dual function is concave: Example

min a:f + x%

subject to:
T+ X9 — 4=0

Find the dual function g(v) = inf,ecp L(z,v)

L(z,v) =27 + 25 + v(z1 + 20 — 4)
g(v) = inlf)L(x, v)=V,L=0
re

oL
v 21 +v T =—%
frd Oz frd 1 — 1 2
R P R O R
2
L(v) = —5 = 4y = concave!
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Dual function: lower bound

e For any A > 0 and any v, it holds:

g(/\> V) < fO(I*)

e Assume 7 feasible point, i.e. f;(Z) <0, hi(Z) =0, A > 0. Then we have

L(#, A\ v) = +2Afz +va ) < fo(@)

g(\,v) =inf L(Z, )\ v) < L(z, )\ v) < fo(Z)

zeD

e This holds for every feasible point Z, including the optimal point x*.
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Strong and weak duality
e Dual problem:

max g(\, v)
subject to A > 0

e Always a convex problem!

) < fo(z")
e Strong duality: g(A*,v*) = fo(z*)

e Weak duality: g(A*,v*

e Duality gap: g(A*,v*) — fo(z™)

e Strong duality usually holds for
convex problems!
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CERTIFICATE

/Q.r-",_

e Dual: convex & lower bound =
Cheap certificate!

o If g(\*,v*) = fo(x¥), it's
guaranteed that this is the global
optimum
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Strong duality: example

N
min x] + x5 Dual:

subject to: 2

w1+x2—4:0

@® Find min, fo(z) s.t. h(x) =0
® Find max, L(V)

e What do you observe?

e Which problem is it easier to solve?
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Dual of a Linear Program

LP in standard form Dual Problem

. T
min ¢ x
_ <~ max — bl v
subject to Az = _ T
subject to A"v+¢ >0
x>0
minimize maximize
#n variables x RN #n inequality constraints
#p equality constraints #p dual variables v
o —1Th =T Ax < Tz: if z and v are feasible solutions, —bTv < ¢Lx.

e if 2* and v* are feasible solutions and —b”v = ¢!z, then z* and v* are
the optimal solutions for their respective problems.
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Two different paths with the same endpoint

Dual problem Primal Problem

n
Z cx; =2
j=1

Superoptimal

(optimal) Z*

m

W= Zlb,y;
i=

Suboptimal

\\/
~Y_ -

T

Suboptimal

W (optimal)
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Slide inspired from Juan-Miguel Morales, 02435 Decision-Making under uncertainty in Electricity Markets, DTU.

Figure taken from: F.S. Hillier, G.J. Liebermann. Introduction to Operations Research. McGraw Hill, 2001.
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Strong duality and KKT conditions

Lz, \v) = +Z)\fz

Strong duality: When does L(z*
Remember:
hi(x) =0
fi(z) <0
A >0
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+ Z%M@) (1)

;A\, v) = fo(z*) hold?
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Strong duality and KKT conditions

Lz, \v) =
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+Z/\ filw +Zuihi(w) (1)

Strong duality: When does L(z*, A\, v) = fo(2*) hold?

Remember:
hi(x) =0
fi(z) <0
Ai >0
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When Ahﬂ(ﬁ*) =0

(complementary slackness)
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KKT conditions hold only if strong duality exists

e KKT conditions require that A; f;(z*) = 0

KKT conditions hold only in case of strong duality

e Strong duality usually holds in convex problems = DC-OPF is convex

e Convex problems with strong duality: KKTs are necessary and sufficient.

Convex problems (such as DC-OPF):
If any point satisfies the KKT conditions, then it is the global optimal.

e We can solve either the primal or the dual problem: same objective value
at z*, due to strong duality
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Question: What is the dual of the DC-OPF?

1 2
@ | | @ min ¢; Pg1 + c2Pao
subject to:
BO = P; — Py,
P >0
3

® no line flow constraints
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Duality: Wrap-up

e The dual problem is a convex optimization problem

e Lower bound and weak duality: if x* and \*, v* feasible, then
g\, v*) < fo(a™)

e Strong duality: if 2* and \*, v* feasible solutions and g(\*,v*) = fo(x™),
then z* and \*, v* are the optimal solutions for their respective problems.

o If dual unbounded above, the primal is infeasible — and vice versa: if
primal unbounded below, the dual is infeasible.

e The dual can provide a cheap certificate for a lower bound of the
objective value.

e In general if the primal has more constraints than variables, the dual will
have more variables than constraints:

e less constraints — easier to solve
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