

Optimization in modern power systems

Lecture 9: QP DC-OPF

Spyros Chatzivasileiadis

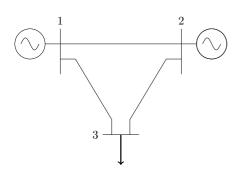
DTU Electrical Engineering
Department of Electrical Engineering

The Goals for Today!

- Mid-term Feedback
- Review of Day 8
- Questions and Clarifications on Assignments
- Example: Dual of DC-OPF
- Quadratic Programming and DC-OPF
- Active Power Losses in AC-OPF
- N-1 security criterion (if there is time)

Reviewing Day 8 in Groups!

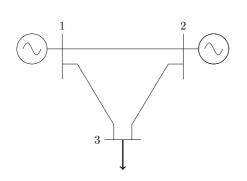
- For 10 minutes discuss with the person sitting next to you about:
 - Three main points we discussed in yesterday's lecture
 - One topic or concept that is not so clear to you and you would like to hear again about it



Points you would like to discuss?

Questions about the Assignments?

Question: What is the dual of the DC-OPF?


$$\min c_1 P_{G1} + c_2 P_{G2}$$
 subject to:

$$B\theta = P_G - P_L$$
$$P_G \ge 0$$

no line flow constraints

Question: What is the dual of the DC-OPF?

$$\min c_1 P_{G1} + c_2 P_{G2}$$
 subject to:

$$B\theta = P_G - P_L$$
$$P_G \ge 0$$

• no line flow constraints

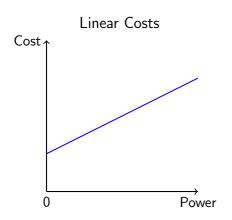
Dual Problem

$$\max \ -b^T \nu$$
 subject to $A^T \nu + c \ge 0$

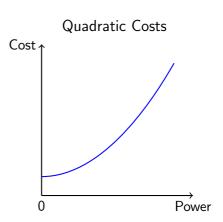
Quadratic Programming

$$\min \frac{1}{2}x^T Q x + c^T x \tag{1}$$

subject to:


$$g_i \cdot x \le h_i, \quad i = 1, \dots, m$$

$$a_i \cdot x = b_i, \quad i = 1, \dots, p$$
(2)


- The only difference between the LP and the QP is in the objective function
- QP is not necessarily convex!
- QP convex $\Leftrightarrow Q \succeq 0$, i.e. positive semidefinite

Linear vs. Quadratic Costs in the OPF

- Linear costs usually represent price bids ⇒ Markets
- e.g. bid 80 \$/MWh for the next 1 hour

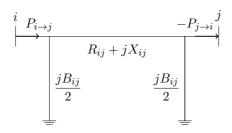
Quadratic costs usually
 approximate fuel costs (and other
 power plant costs)
 ⇒ verticallly
 integrated utilities that wish to
 minimize costs

DC-OPF with Quadratic Costs

$$\min \sum_{i} c_{2,i} P_{G_i}^2 + c_{1,i} P_{G_i} + c_{0,i}$$

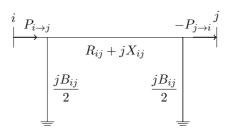
subject to:

$$P_{G_i}^{min} \leq P_{G_i} \leq P_{G_i}^{max}$$


$$\mathbf{B} \cdot \theta = \mathbf{P_G} - \mathbf{P_D}$$

$$P_{ij,max} \leq \frac{1}{x_{ij}} (\theta_i - \theta_j) \leq P_{ij,max}$$

- A DC-OPF with quadratic costs is a convex problem
- $\frac{1}{2}x^TQx + c^Tx$: How does Q look like in a 'QP' DC-OPF?



 π -model of the line

Active Power Losses in AC-OPF

 π -model of the line

- Losses = "P leaving node i" "P arriving at node j"
- P leaving node i: $P_{i o j}$
- P arriving at node j: $-P_{j\to i}$

$$P_{\text{losses}} = P_{i \to j} + P_{j \to i}$$