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DTU Wind and Energy Systems
at a Glance378

employees

#1
in wind publication 
citations worldwide

98
PhD students

280
industry partners

70%
funding that involves 

industry
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DTU Department of Wind and Energy Systems
Working for a sustainable future

~100 people working on power systems
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Electric Power Systems 
PWR Section: 30+3 members; 20 nationalities

5

AC/DC Wind Power Lab
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PWR: Advanced Methods and Tools for Power System 
Security and Control
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Next-Generation 
Scientific Computing

• Physics-Informed and 
Trustworthy AI

• Quantum Computing
• Energy Data Spaces

PWR: Advanced Tools to Avoid Blackouts

Extreme Converter-
Based Power Systems

• North Sea Energy Islands
• Baltic Energy Island
• HVDC Grids
• Interoperability and 

Standards

Cyberphysical Systems

• Digital Twins
• Hardware and Software in 

the Loop
• Open-Source Models of the 

Nordic and European 
Systems

Bornholm “Living Lab”
• Danish Island. “Living Lab” 

of 40’000 people

• Demonstrations for Energy 
Islands, Energy Data 
Spaces, Smart Control of 
Converters

Funding
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North Sea Energy Island
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Artist’s 
impression
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Machine learning: Why shall we apply it in power systems? 

1. Extremely fast   can assess  100x-1’000x  more of critical scenarios

• computation within only a few milliseconds (100x – 1000x faster than 
conventional methods)
– Predict fast and act faster  drastically increase power system resilience

2. Can handle very complex systems and infer from incomplete data
• Excellent potential to create accurate surrogate models

– Accelerate simulations; and offer good approximations of previously 
intractable systems

9

But: Would an Operator ever trust AI in the Control Room?

ML Proxies
Extremely fast, 
and hopefully 

accurate
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This talk: Two Challenges

• Challenge #1: Machine Learning is extremely dependent on high-quality data. 
What about all the physical models we have developed over the past 100 years?

• Challenge #2: Has the Neural Network been trained to generalize well? Can we 
trust it?

10

Abbreviations I will use:
• ML: Machine Learning
• NN: Neural Network
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Facts Consequence

Challenge #1:            
ML extremely 
dependent on     
high-quality data

1. All data are not the same
Example: Assume we train a NN to 
determine if a system is stable  Training 
data close to the stability boundary contain 
much more information than training data 
far away from it. 

Statistical sampling is not enough

11
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Facts Consequence

Challenge #1:            
ML extremely 
dependent on     
high-quality data

1. All data are not the same
Example: Assume we train a NN to 
determine if a system is stable  Training 
data close to the stability boundary contain 
much more information than training data 
far away from it. 

Statistical sampling is not enough

2. Training data must follow the same 
statistical properties as real data
Do we have enough historical data about 
e.g. outages? Is this possible?

1. For power systems: We have so many 
physical models. Add them!

2. Unbalanced datasets. We cannot trust 
“Neural Network Accuracy” as a 
performance metric

12
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1. For power systems: We have so many 
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“Neural Network Accuracy” as a 
performance metric
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to generalize well?

3. NN training is an extremely complex 
optimization procedure
Prone to overfitting/underfitting

Can we trust it? 
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Solution
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Closing the Loop: A Framework for Trustworthy 
Machine Learning in Power Systems

17

J. Stiasny, S. Chevalier, R. Nellikkath, B. Sævarsson, S. Chatzivasileiadis. Closing the Loop: A Framework for Trustworthy Machine 
Learning in Power Systems. Accepted to 2022 iREP Symposium - Bulk Power System Dynamics and Control - XI (iREP). Banff, 
Canada. July 2022. [ paper | code ]

https://arxiv.org/abs/2203.07505
https://github.com/jbesty/irep_2022_closing_the_loop
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

Satisfied?

yes
no

Ready to deploy in 
a real application

Conventional Neural Network Training for Power System Applications
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

Trustworthy AI

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
Statistics”

Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Closing the Loop: Trustworthy ML for Power Systems
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Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

“Sampling beyond 
Statistics”

Enrich Database: 
Verification-

Informed Sampling

Satisfied?

yes
no

Trustworthy AI

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
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Focus on High-
Information Content 
Regions: Separating 

hyperplanes and 
Directed Walks
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Sampling beyond Statistics:
Separating Hyperplanes and Directed Walks

• Historical data are often insufficient
• Need to generate our own data 

• Here: generate data for N-1 
security+small-signal stability
– Assessing the stability of 100’000s of operating 

points is an extremely demanding task
– Immense search space
– How can I do it efficiently?

24

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ”Efficient 
database generation for data-driven security assessment of power 
systems”. ”.  IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, Jan. 
2020. https://www.arxiv.org/abs/1806.0107.pdf

https://www.arxiv.org/abs/1806.0107.pdf
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Sampling beyond Statistics:
Better results with less data

• Historical data are often insufficient
• Need to generate our own data 

• Here: generate data for N-1 
security+small-signal stability
– Assessing the stability of 100’000s of operating 

points is an extremely demanding task
– Immense search space
– How can I do it efficiently?

25

Proposed approach: 
• Can accommodate numerous definitions 

of power system security (e.g. N-1, N-k, 
small-signal stability, voltage stability, 
transient stability, or a combination of 
them)

• 10-20 times faster than existing state-of-
the-art approaches

• Generated Databases for IEEE 14-bus and 
NESTA 162-bus system available!
http://www.chatziva.com/downloads.html#databases

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ”Efficient 
database generation for data-driven security assessment of power 
systems”. ”.  IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, Jan. 
2020. https://www.arxiv.org/abs/1806.0107.pdf

http://www.chatziva.com/downloads.html#databases
https://www.arxiv.org/abs/1806.0107.pdf
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•The goal
– Focus on the boundary between stability 

and instability
– We call it: “high information content” 

region

•How?
1. Using convex relaxations
2. And “Directed Walks” 

26

Unstable regions

Stable region High information 
content

Real data for the IEEE 14-bus system
N-1 security and small-signal stability

Sampling beyond Statistics:
Efficient Database Generation
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Convex relaxations 
to discard infeasible 
regions

27

Non-convex 
stable region
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Convex relaxations 
to discard infeasible 
regions

28

Non-convex 
stable region

• Certificate: if point infeasible for 
semidefinite relaxation 
infeasible for the original problem

convex 
relaxation
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Convex relaxations 
to discard infeasible 
regions

29

Non-convex 
stable region

• Certificate: if point infeasible for 
semidefinite relaxation 
infeasible for the original problem

• If infeasible point: find minimum 
radius to feasibility

convex 
relaxation
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Convex relaxations 
to discard infeasible 
regions

30

Non-convex 
stable region

convex 
relaxation

• Certificate: if point infeasible for 
semidefinite relaxation 
infeasible for the original problem

• If infeasible point: find minimum 
radius to feasibility

• Discard all points on one side of 
the hyperplane

• A. Venzke, D.K. Molzahn, S. Chatzivasileiadis, 
Efficient Creation of Datasets for Data-Driven 
Power System Applications. PSCC 2020. 
https://arxiv.org/pdf/1910.01794.pdf

https://arxiv.org/pdf/1910.01794.pdf
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• “Directed walks”: steepest-
descent based algorithm to 
explore the remaining search 
space, focusing on the area 
around the security boundary

1. Variable step-size
2. Parallel computation
3. Full N-1 contingency check

Directed Walks
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Results

Points close to the security boundary 
(within distance γ)

IEEE 14-bus NESTA 162-bus

Brute Force 100% of points in 556.0 min intractable

Importance Sampling 100% of points in 37.0 min 901 points in 35.7 hours

Proposed Method 100% of points in 3.8 min 183’295 points in 37.1 hours

32
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Sampling beyond Statistics:
NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary during NN training
– But: impossible to know a priori which are these 

points

• What do we do? 

33
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NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary
– But: impossible to know a priori which are these 

points

• What do we do? 
1. Sample 1’000’000 random points and have the 

NN assess them
• Extremely fast  NN will take some minutes 

to assess all of them

34
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NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary
– But: impossible to know a priori which are these 

points

• What do we do? 
1. Sample 1’000’000 random points and have the 

NN assess them
• Extremely fast  NN will take some minutes 

to assess all of them

2. From the NN assessment: identify the region 
close to the stability boundary

35
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NN-Informed Sampling

• Ideally: enrich the database with points near the 
stability  boundary
– But: impossible to know a priori which are these 

points

• What do we do? 
1. Sample 1’000’000 random points and have the 

NN assess them
• Extremely fast  NN will take some minutes 

to assess all of them

2. From the NN assessment: identify the region 
close to the stability boundary

3. Sample 200 points in this region, compute the 
ground truth (=run N-1 and small signal 
stability), and enrich the database

36
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Sampling beyond statistics: 
Better results with less data

• Larger datasets achieve lower 
error
– 64 : ~2x more data than  54

– 74 : ~4x more data than  54

• The directed walks and the 
NN-informed resampling 
achieve the same 
performance with half the 
datapoints

37

Number of datapoints

Mean squared error (test set loss)

Note: Actual performance of DW and NI depends 
on the case study. But the trend remains the 
same across all our experiments
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Sampling beyond statistics: 
Better results with less data

• Larger datasets achieve lower 
error
– 64 : ~2x more data than  54

– 74 : ~4x more data than  54

• The directed walks and the 
NN-informed resampling 
achieve the same 
performance with half the 
datapoints

• Physics-Informed Neural 
Networks can achieve 
similar results

38

Number of datapoints

Mean squared error (test set loss)

Note: Actual performance of DW, NI, and PINNs 
depends on the case study. But the trend remains 
the same across all our experiments
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Physics-Informed Neural 
Networks for Power Systems

39
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min
𝑤𝑤1,𝑤𝑤2

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

s.t.
�𝑦𝑦𝑖𝑖 = 𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖 ∀𝑖𝑖

40

𝑥𝑥

𝑦𝑦 �𝑦𝑦𝑖𝑖 = 𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖

𝑦𝑦𝑖𝑖: actual/correct value

�𝑦𝑦𝑖𝑖: estimated value

Loss function: Estimate best 𝑤𝑤1, 𝑤𝑤2
to fit the training data

Traditional training of neural networks 
required no information about the 

underlying physical model. Just data!

Neural Networks: An advanced 
form of non-linear regression
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Physics Informed Neural Networks

• Automatic differentiation: derivatives of the neural network output with 
respect to the input can be computed during the training procedure

• A differential-algebraic model of a physical system can be included in the 
neural network training*

• Neural networks can now exploit knowledge of the actual physical system

• Machine learning platforms (e.g. Pytorch, Tensorflow) enable these capabilities

41

*M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-Informed neural networks: A deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equations", Journal of Computational Physics, vol.378, pp. 686-707, 2019
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Physics-Informed Neural Networks for Power Systems

42

“Original”     
Loss function

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural 
Networks for Power Systems. Presented at the Best Paper Session of 
IEEE PES GM 2020.  https://arxiv.org/pdf/1911.03737.pdf

https://arxiv.org/pdf/1911.03737.pdf
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Physics-Informed Neural Networks for Power Systems

43

“Original”     
Loss function

Swing equation

“Physics-Informed” 
term

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural 
Networks for Power Systems. Presented at the Best Paper Session of 
IEEE PES GM 2020.  https://arxiv.org/pdf/1911.03737.pdf

https://arxiv.org/pdf/1911.03737.pdf


DTU Wind and Energy Systems – Spyros Chatzivasileiadis11 January 2023

Physics-Informed Neural Networks for Power Systems

44

Code is available on GitHub: https://github.com/jbesty
G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. Presented at the 
Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf

• Physics-Informed Neural Networks (PINN) could 
potentially replace solvers for systems of 
differential-algebraic equations in the long-term
– Probable power system application: 

Extremely fast screening of critical 
contingencies

• In our example: PINN 87 times faster than ODE 
solver

• Can directly estimate the rotor angle at any time 
instant

https://github.com/jbesty
https://arxiv.org/pdf/1911.03737.pdf
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Computation time: 
Classical numerical solvers vs. Physics-Informed NNs

• Physics-Informed Neural Networks can 
determine the outputs more than 100x faster 
than classical numerical solvers

– The further ahead we look in time, e.g. what is 
the frequency at t=1s, the larger the 
computational advantage is

45

Classic solvers

PINNs

RK45 #1
RK45 #2
RK45 #3
PINN #1
PINN #2
PINN #3

0.01s 0.1s 1s
J. Stiasny, G. S. Misyris, S. Chatzivasileiadis, Transient Stability Analysis with Physics-
Informed Neural Networks. https://arxiv.org/abs/2106.13638 [ code ] 

https://arxiv.org/abs/2106.13638
https://github.com/jbesty
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Thoughts on Physics-Informed Neural Networks (PINNs)
• PINNs convert NN training from supervised

learning to unsupervised learning

• PINNs show a clear benefit for problems 
that include PDEs and ODEs
– The benefit is less distinct for problems

with algebraic equations only
• Trade-off between training database size

and PINN training time

• We believe that it is possible to develop a 
NN-based simulator for time-domain 
simulations
– Currently working with NVIDIA to 

accelerate PINNs, and 
– Ørsted (the largest offshore wind

developer) to develop a tool for real wind-
farm electrical design problems

46

1 M. Chatzos, T. W. K. Mak and P. V. Hentenryck, "Spatial Network 
Decomposition for Fast and Scalable AC-OPF Learning,“ 2022

• How do we generate NNs that are valid for a 
wide range of topologies?
– ”Decompose them1”  PINNs for single 

components? Or for sub-graphs of the 
whole system

– For steady-state (algebraic) problems 
Graph Neural Networks?

• How do we verify PINNs for dynamic systems? 
(with ODEs and PDEs)

• Can we have a confidence measure of the 
PINN output?
– Bayesian PINNs? 
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Bayesian Physics-Informed Neural Networks

• Why Bayesian? 
– Add a confidence measure to the NN output
– Very useful for forecasting, system 

identification, and many others

47

True 
value

BPINN
output

BPINN       
Confidence Interval

L. Yang, X. Meng, and G. E. Karniadakis, “B-PINNs: Bayesian physicsinformed neural networks for forward and 
inverse PDE problems with noisy data,” Journal of Computational Physics, vol. 425, p. 109913, 2021.
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Bayesian Physics-Informed Neural Networks

48

• Example: 
– Receive frequency time series as input
– What is the inertia and damping coefficient of 

the system?

Output

Input

How much is inertia and damping?
Compare:
1. SINDy = among the recent most popular

non-linear system identification methods
2. PINNs
3. Bayesian PINNs (BPINNs)

S. Stock, J. Stiasny, D. Babazadeh, C. Becker, S. Chatzivasileiadis, Bayesian Physics-Informed
Neural Networks for Robust System Identification of Power Systems. https://arxiv.org/abs/2212.11911

https://arxiv.org/abs/2212.11911
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Bayesian Physics-Informed Neural Networks (BPINNs)
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• Example: 
– Receive frequency time series as input
– What is the inertia and damping coefficient of 

the system?

Input

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 3.80% 0.14%

PINN 0.34% 0.84%

BPINN 1.20% ± 9.26% 0.01% ± 0.011%

S. Stock, J. Stiasny, D. Babazadeh, C. Becker, S. Chatzivasileiadis, Bayesian Physics-Informed
Neural Networks for Robust System Identification of Power Systems. https://arxiv.org/abs/2212.11911

1. All approaches perform well
2. BPINN is the only with confidence interval

Note: We used default parameters for SINDy and BPINNs; for
PINNs, we used tailored parameters, based on our experience
with PINNs over the past years.

https://arxiv.org/abs/2212.11911
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Bayesian Physics-Informed Neural Networks (BPINNs)
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• Example: 
– Receive frequency time series as input
– What is the inertia and damping coefficient of 

the system?

Input

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 3.80% 0.14%

PINN 0.34% 0.84%

BPINN 1.20% ± 9.26% 0.01% ± 0.011%

S. Stock, J. Stiasny, D. Babazadeh, C. Becker, S. Chatzivasileiadis, Bayesian Physics-Informed
Neural Networks for Robust System Identification of Power Systems. https://arxiv.org/abs/2212.11911

https://arxiv.org/abs/2212.11911
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Bayesian Physics-Informed Neural Networks 
(BPINNs)

51

• Example: 
– Receive frequency time series as input
– What is the inertia and damping coefficient of 

the system?

Input

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 3.80% 0.14%

PINN 0.34% 0.84%

BPINN 1.20% ± 9.26% 0.01% ± 0.011%

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 37.88% 9.67%

PINN 0.41% 3.99%

BPINN 2.03% ± 21.59% 0.02% ± 0.011%

Noise = 5%
If there is noise, 
SINDy results to:  
10x-90x larger error

S. Stock, J. Stiasny, D. Babazadeh, C. Becker, S. Chatzivasileiadis, Bayesian Physics-Informed
Neural Networks for Robust System Identification of Power Systems. https://arxiv.org/abs/2212.11911

https://arxiv.org/abs/2212.11911
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Bayesian Physics-Informed Neural Networks 
(BPINNs)
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• Example: 
– Receive frequency time series as input
– What is the inertia and damping coefficient of 

the system?

Input

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 3.80% 0.14%

PINN 0.34% 0.84%

BPINN 1.20% ± 9.26% 0.01% ± 0.011%

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 37.88% 9.67%

PINN 0.41% 3.99%

BPINN 2.03% ± 21.59% 0.02% ± 0.011%

Noise = 5%
If there is noise, 
SINDy results to:  
10x-90x larger error

PINN and BPINN 
maintain good
performance

S. Stock, J. Stiasny, D. Babazadeh, C. Becker, S. Chatzivasileiadis, Bayesian Physics-Informed
Neural Networks for Robust System Identification of Power Systems. https://arxiv.org/abs/2212.11911

https://arxiv.org/abs/2212.11911
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Bayesian Physics-Informed Neural Networks 
(BPINNs)
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• Example: 
– Receive frequency time series as input
– What is the inertia and damping coefficient of 

the system?

Input

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 3.80% 0.14%

PINN 0.34% 0.84%

BPINN 1.20% ± 9.26% 0.01% ± 0.011%

Inertia Estim. 
Error (%)

Damping Estim. 
Error (%)

SINDy 37.88% 9.67%

PINN 0.41% 3.99%

BPINN 2.03% ± 21.59% 0.02% ± 0.011%

Noise = 5%
If there is noise, 
SINDy results to:  
10x-90x larger error

PINN and BPINN 
maintain good
performance

BPINN is the only with 
confidence interval

S. Stock, J. Stiasny, D. Babazadeh, C. Becker, S. Chatzivasileiadis, Bayesian Physics-Informed
Neural Networks for Robust System Identification of Power Systems. https://arxiv.org/abs/2212.11911

https://arxiv.org/abs/2212.11911
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Closing the Loop: Trustworthy ML for Power Systems

54

Training 
Database

Train Neural 
Network

with/without 
Physics-Informed

NN Verification/
Worst-case 
Guarantees

Final NN with 
Performance 
Guarantees

Trustworthy AI

Satisfied?

yes
no

“Sampling beyond 
Statistics”

Enrich Database: 
NN-Informed 

Sampling

“Sampling beyond 
Statistics”

High-Information 
Content: Separating 

hyperplanes and 
Directed Walks
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Neural Network Verification
for classification NNs in Power Systems

55

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications.
In IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 383-397, Jan. 2021, https://arxiv.org/pdf/1910.01624.pdf

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer 
programming,” in International Conference on Learning Representations (ICLR 2019), 2019

https://arxiv.org/pdf/1910.01624.pdf
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Neural Network Verification: HOW?

1. Exact transformation: Convert the neural network to a set of linear equations with 
binaries

• The Neural Network can be included in a mixed-integer linear program

2. Formulate an optimization problem (MILP)  and solve it  certificate for NN behavior

3. Assess if the neural network output complies with the ground truth

56
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• Most usual activation function: ReLU

• ReLU: Rectifier Linear Unit

57

𝑤𝑤35

𝑤𝑤24

𝑢𝑢𝑖𝑖𝑖𝑖 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜

𝑢𝑢5

𝑢𝑢4𝑢𝑢2

𝑢𝑢3

From Neural Networks to 
Mixed-Integer Linear Programming

Linear weightsNon-linear 
activation 
functions

input

output
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From Neural Networks to 
Mixed-Integer Linear Programming

1. But ReLU can be transformed to a piecewise 
linear function with binaries

input x

output y

If binary =0, 
y=0
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From Neural Networks to 
Mixed-Integer Linear Programming

1. But ReLU can be transformed to a piecewise 
linear function with binaries

input x

output y

If binary =0, 
y=0

If binary =1, 
y=x
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From Neural Networks to 
Mixed-Integer Linear Programming

2. I can encode all operations of a Neural Network to 
a system of linear equations with continuous and 
binary variables

3. I can integrate all information encoded in a 
neural network inside a - Mixed-Integed Linear 
optimization Program - MILP

input x

output y

1. But ReLU can be transformed to a piecewise 
linear function with binaries

If binary =0, 
y=0

If binary =1, 
y=x

y = max 0, 𝑥𝑥

ReLU in a NN: 𝑢𝑢𝑗𝑗 = max 0,𝑤𝑤𝑖𝑖𝑖𝑖𝑢𝑢𝑖𝑖 + 𝑏𝑏𝑖𝑖
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Certify the output for a continuous range of inputs

61

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf

1. We assume a given input xref with 
classification “safe”

https://arxiv.org/pdf/1910.01624.pdf
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Certify the output for a continuous range of inputs

62

1. We assume a given input xref with 
classification “safe”

2. Solve optimization problem: Does 
classification change for any input 
within distance ε from xref?

3. If not, then I can certify that my neural 
network will classify the whole 
continuous region as “safe”

4. I can repeat this for other regions and 
different classifications

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf

https://arxiv.org/pdf/1910.01624.pdf
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Adversarial examples in safety-critical systems

• Adversarial examples exist in many (deep) learning applications
• Major barrier for adoption of machine learning techniques in safety-critical 

systems!

63
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Systematically identify adversarial examples

64

1. We assume a given input xref with 
classification “safe”

2. Solve optimization problem: What is 
the minimum distance ε for which
the classification changes to 
”unsafe”

3. This point either is on the other side 
of the classification boundary
(correct classification) or is an
adversarial point.
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Provable Worst-case Guarantees

65

Venzke, G. Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees for Neural 
Networks.  Best Student Paper Award at IEEE SmartGridComm 2020. https://arxiv.org/pdf/2006.11029.pdf

S. Chevalier, S. Chatzivasileiadis. Global Performance Guarantees for Neural Network Models of AC Power Flow. 
https://arxiv.org/pdf/2211.07125.pdf

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of Neural Networks. 
https://arxiv.org/pdf/2212.10930.pdf

https://arxiv.org/pdf/2006.11029.pdf
https://arxiv.org/pdf/2211.07125.pdf
https://arxiv.org/pdf/2212.10930.pdf
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Key Enabler: 
our ability to represent the underlying ground truth

Main idea:

• Take advantage of the ground truth representation we have, i.e. the power system models

• Measure the performance of the NN against the ground truth  here the result of an OPF
– Does the NN output violate constraints?
– How close is the NN output to the optimal point?

• Determine the worst-case performance
– Across the continuous input domain
– No Sampling
– Instead, we MILP or MINLP

66
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Quick Reminder: DC Optimal Power Flow

• Objective: find the minimum cost generation dispatch 
• Input: Varying load demand at different nodes

• Considered constant: generator costs; system topology

67
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Quick Reminder: DC Optimal Power Flow

• Objective: find the minimum cost generation dispatch 
• Input: Varying load demand at different nodes

• Considered constant: generator costs; system topology

68

Several recent approaches in the 
literature that apply Neural Networks 
for solving the DC-OPF
• Demonstrate up to 100x speedup

• But no performance guarantees
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Part I: Maximum limit-violations

1. Maximum violation of generator limits

69

Example: 
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Part I: Maximum limit-violations 

1. Maximum violation of generator limits

70

Example: 

2. Maximum violation of line limits

Line flow equations for 
DC-OPF based on PTDFs
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Worst violation over the 
whole training dataset 

(training+test set)

71

Our algorithm: provable
worst-case guarantee over 
the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits
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Worst violation over the 
whole training dataset 

(training+test set)

72

Our algorithm: provable
worst-case guarantee over 
the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits

Over the whole input domain 
violations can be much larger 
(here ~7x) compared to what has 
been estimated empirically on 
the dataset
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Worst violation over the 
whole training dataset 

(training+test set)

73

New algorithm: provable
worst-case guarantee over 
the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits

We can now provide guarantees 
that no NN output will violate 
the line limits over the whole 
input domain
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How can we reduce the worst-case violations?

•From our experiments with DC-OPF in 7 different test power 
systems, we observed that the worst-case violations occur at 
the boundary of the input domain

•Possible solution:
1. Train on a larger input domain
2. Use the NN on a subdomain of the original training input

74
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Reducing the worst-case violations

75

No violation

Max violation

Training
Dataset:

Load Domain 
[60%-100%]

δ=0.08

Use for a  
single point  
only

Train 

Use on a 
subdomain

Train and use on 
the same domain 

Train 
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Neural Networks for non-linear problems: 
How can we determine the worst-case violations?

• DC-OPF: convex linear problem
– Determining the worst-case violations : MILP

• AC-OPF: non-linear
– Determining the worst-case violations : MIQP = challenge!

76

“we were unable to compute the worst-
case line flow constraint violation since 
the MIQCQP problem could not be 
solved to zero optimality gap within 5 
hours. This highlights the computational 
challenges associated with the 
extraction of the worst-case guarantees 
for AC-OPF...”

R. Nellikkath and S. Chatzivasileiadis, “Physics-informed
neural networks for AC optimal power flow,” Electric Power 
Systems Research, 2022. (presented at PSCC)

S. Chevalier, S. Chatzivasileiadis. Global Performance Guarantees for Neural 
Network Models of AC Power Flow. https://arxiv.org/pdf/2211.07125.pdf

https://arxiv.org/pdf/2211.07125.pdf
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Neural Networks for non-linear problems: How can we
determine the worst-case violations?

• AC-OPF: Determining the worst-case 
violations = MIQP

What can we do?
1. Use SDP to relax the binaries and the 

quadratic terms of the MIQP  too
loose

2. Use Sherali-Adams cuts to tighten the 
relaxation tight but too many
constraints (N2)

3. Sequential Targeted Tightening = 
iterative tightening

77

S. Chevalier, S. Chatzivasileiadis. Global Performance Guarantees for Neural 
Network Models of AC Power Flow. https://arxiv.org/pdf/2211.07125.pdf

https://arxiv.org/pdf/2211.07125.pdf
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Neural Networks for non-linear problems: How can we
determine the worst-case violations?

• AC-OPF: Determining the worst-case 
violations = MIQP

What can we do?
1. Use SDP to relax the binaries and the 

quadratic terms of the MIQP  too
loose

2. Use Sherali-Adams cuts to tighten the 
relaxation tight but too many
constraints (N2)

3. Sequential Targeted Tightening = 
iterative tightening

78

S. Chevalier, S. Chatzivasileiadis. Global Performance Guarantees for Neural 
Network Models of AC Power Flow. https://arxiv.org/pdf/2211.07125.pdf

• K. D. Dvijotham, R. Stanforth, S. Gowal, C. Qin, S. De, and P. Kohli, “Efficient 
neural network verification with exactness characterization,” in Proceedings of 
The 35th Uncertainty in Artificial Intelligence Conference, 2020.

• Z. Ma and S. Sojoudi, “Strengthened sdp verification of neural network
robustness via non-convex cuts,” arXiv preprint arXiv:2010.08603, 2020. 

• J. Lan, Y. Zheng, and A. Lomuscio, “Tight neural network verification via 
semidefinite relaxations and linear reformulations,” in Proceedings of the AAAI 
Conference on Artificial Intelligence, vol. 36, no. 7, 2022, pp. 7272–7280. 

• S. Fattahi, M. Ashraphijuo, J. Lavaei, and A. Atamturk, “Conic ¨ relaxations of 
the unit commitment problem,” Energy, vol. 134, pp. 1079–1095, 2017. 

• S. Gopinath, H. Hijazi, T. Weisser, H. Nagarajan, M. Yetkin, K. Sundar, and R. 
Bent, “Proving global optimality of acopf solutions,” Electric Power Systems 
Research, vol. 189, p. 106688, 2020

Our NN verification problem: includes the ground truth in the 
optimization
This approach: exploits iterative tightening to not only query the 
NN, but to also tighten the SDP variable associated with the 
ground truth

https://arxiv.org/pdf/2211.07125.pdf
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Neural Networks for non-linear problems: How can we
determine the worst-case violations?

• AC-OPF: Determining the worst-case 
violations = MIQP

What can we do?
1. Use SDP to relax the binaries and the 

quadratic terms of the MIQP  too
loose

2. Use Sherali-Adams cuts to tighten the 
relaxation tight but too many
constraints (N2)

3. Sequential Targeted Tightening = 
iterative tightening

79

S. Chevalier, S. Chatzivasileiadis. Global Performance Guarantees for Neural 
Network Models of AC Power Flow. https://arxiv.org/pdf/2211.07125.pdf

Gurobi MIQP vs Sequential Targeted Tightening (STT)

STT achieves much tighter bounds
Tight bounds = Guarantees (loose bounds = no guarantees)

https://arxiv.org/pdf/2211.07125.pdf
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Worst-case Violations: What is the next natural step?

Integrate the worst-case violations inside the neural network training procedure

Our ”Holy Grail”: Design a Neural Network training procedure that:
• produces a Neural Network with best average performance, 
• and delivers guarantees about its worst-case performance

80
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Worst-case Violations: What is the next natural step?

Integrate the worst-case violations inside the neural network training procedure

Our ”Holy Grail”: Design a Neural Network training procedure that:
• produces a Neural Network with best average performance, 
• and delivers guarantees about its worst-case performance

(Random) Example of an imaginary final message: 
• ”Neural Network Training finished. Accuracy 99.2%. Worst-case violation of

critical constraints: 10%.” 

Wouldn’t that create a good level of trust for applying NNs on any safety-critical
system?
Extends beyond power systems  drones, air-traffic control, robots, control of 
inverters, and others

81
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How can we integrate worst-case violations in NN training?

• Standard NN training

82
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• Standard NN training

• NN training which penalizes constraint violations
– Reduces the violations for the training dataset

83

See Fioretto, Mak, Van Hentenryck, AAAI, 2020, 
and others

e.g. for generator 
constraint violations

How can we integrate worst-case violations in NN training?
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• Standard NN training

• NN training which penalizes constraint violations
– Reduces the violations for the training dataset

• NN training which penalizes worst-case violations
– Worst-case violations might be on datapoints that

do not belong to the training dataset. And we
might just discover it when we deploy the NN in a 
real application
• this is a major fear of any power system operator 

(and a main barrier for the NNs in safety-critical
applications)

84

See Fioretto, Mak, Van Hentenryck, AAAI, 2020, 
and others

e.g. for generator 
constraint violations

Hard bilevel optimization problem
1. Lower level is a MILP
2. The MILP must be differentiable so 

that the NN training can backpropagate

How can we integrate worst-case violations in NN training?
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Some thoughts
on how to design an NN training that minimizes worst-case violations

1. Fix the binaries 
• Arbitrary assumption (but it works): for small 

perturbations of weights&biases, binaries remain constant
• Solve the lower level MILP by itself, find the binary values

for the max constraint violation and fix them

2. MILP is converted to an LP it is now differentiable

3. Cast it as a diffentiable optimization layer (we use CVXPY)     
 NN training can now backpropagate through it

85

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations 
of Neural Networks. https://arxiv.org/pdf/2212.10930.pdf

https://arxiv.org/pdf/2212.10930.pdf
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1. Fix the binaries 
• Arbitrary assumption (but it works): for small 

perturbations of weights&biases, binaries remain constant
• Solve the lower level MILP by itself, find the binary values

for the max constraint violation and fix them

2. MILP is converted to an LP it is now differentiable

3. Cast it as a diffentiable optimization layer (we use CVXPY)     
 NN training can now backpropagate through it

4. Reduce complexity: reduce the weights and biases to 
adjust w, b of last layer had the largest impact

86

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations 
of Neural Networks.. https://arxiv.org/pdf/2212.10930.pdf

Derivatives of weights and biases on each of 
the 4 layers w.r.t. worst-case violations

Some thoughts
on how to design an NN training that minimizes worst-case violations

https://arxiv.org/pdf/2212.10930.pdf
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R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations 
of Neural Networks.. https://arxiv.org/pdf/2212.10930.pdf

NN: standard NN
GenNN: penalizing violations in 
the Loss Function
WCNN: our approach; 
penalizing worst-case violations

AC-OPF

https://arxiv.org/pdf/2212.10930.pdf
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R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations 
of Neural Networks.. https://arxiv.org/pdf/2212.10930.pdf

NN: standard NN
GenNN: penalizing violations in the Loss
Function
WCNN: our approach; penalizing worst-
case violations

1. Good average performance 
and minimum worst-case 
violations are not necessarily
competing objectives

2. Surprising: WCNN not only
eliminates all violations, but 
manages to find a lower
minimum for the average 
performance as well

https://arxiv.org/pdf/2212.10930.pdf
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R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations 
of Neural Networks.. https://arxiv.org/pdf/2212.10930.pdf

NN: standard NN
GenNN: penalizing violations in the Loss
Function
WCNN: our approach; penalizing worst-
case violations

1. For larger systems, the worst-
case violations are large

2. WCNN manages to reduce
them by 50%

3. Reducing Worst-Case 
Violations does not affect
average performance!

A lot more work is needed to
improve scalability and

performance!

https://arxiv.org/pdf/2212.10930.pdf
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Thoughts on 
Minimizing Worst-Case Violations of Neural Networks

• For the first time, create a NN training procedure that can not only determine but also reduce
the worst-case violations during training

• Why does it work?
– Because we have a physical model of the process that our NN emulates

• What are the challenges?
– Computational performance  it takes too much time
– Scalability how can we verify larger neural networks (or consider more complex ground 

truth representations)
– How can we achieve the zero MILP gap = obtain the performance guarantee?

• Solutions?
– …

90
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Wrap-up

91

1. Sampling beyond statistics can yield high quality 
training databases with smaller amounts of data

2. Physics-informed neural networks exploit the 
underlying physics in the training procedure. 

3. Neural network verification builds the missing 
trust; necessary in safety-critical systems.

4. Combine NN verification with physics-informed 
(ground truth representation)  NN training that 
delivers worst-case performance guarantees

“Data-centric AI movement”                   
(Andrew Ng, Stanford, and others)

“Small [data] is the new big” 
(IEEE Spectrum, Apr. 2022)

Exploit the prior knowledge
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Some Final Thoughts

• If we want to accelerate processes by 10x-
100x-1000x we need to think differently
– Conventional methods reach their limits (?)
– Could Machine Learning become the 

disruptive technology?

• Neural Network Verification is an 
optimization problem. Can we address its
challenges?
– If yes, we remove barriers for a wide range

of safety-critical applications
• Power systems, robots, self-driving cars, control of 

critical infrastructure, and many others

92

• Can we model the ground truth? If yes, use it! 
– Physics-Informed Neural Networks
– Sampling Beyond Statistics
– Neural Network Training with Worst-Case 

Performance Guarantees

• Federated/Distributed Learning
– Do not need a single NN for the whole problem
– Let’s work with ”Libraries of Neural Networks”, 

similar to ”Libraries of Models”

• For Power Systems: Major Challenge = Topology
– Solution: Graph Neural Networks?
– Transfer Learning?
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What did I not talk about
Exploring a wide range of research directions

1. Contracting Neural-Newton Solver: Derive convergence guarantees for Neural Networks that can 
replace conventional Newton solvers [https://arxiv.org/pdf/2106.02543.pdf , L4DC 2022]

2. Accelerating MILPs: using Decision Trees to estimate the active set and drastically reduce the 
number of binary variables  [ https://arxiv.org/pdf/2010.06344.pdf , IEEE Trans. Power Systems]

3. Interpretable Machine Learning: Direct association of the SHAP Values with the Power Transfer 
Distribution Factors (PTDFs) [ https://arxiv.org/pdf/2209.05793.pdf , submitted ]

4. Input Convex NNs for convex approximations of non-convex optimization problems                               
[ https://arxiv.org/pdf/2209.08645.pdf , submitted ]

5. Physics-Informed Neural Networks for Fast Dynamic Security Assessment 
[https://arxiv.org/pdf/2106.13638.pdf, code: https://github.com/jbesty/PINNs_transient_stability_analysis ]

and others…

93

https://arxiv.org/pdf/2106.02543.pdf
https://arxiv.org/pdf/2010.06344.pdf
https://arxiv.org/pdf/2010.06344.pdf
https://arxiv.org/pdf/2010.06344.pdf
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Interested in a postdoc or PhD? 

• Come work with us! 

• Wide range of topics around ML and beyond: 
– Trustworthy Machine Learning, Physics-Informed 

Neural Networks, capturing intractrable constraints 
with NNs, and more!

– Working with real datasets, and industry collaboration
– Opportunities for open academic research and/or 

toolbox development for practical applications

• Open positions online!

• Deadline: 31st January 2023

• Contact: spchatz@dtu.dk
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• A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. Accepted at IEEE Trans. on Smartgrid. 2020.  https://arxiv.org/pdf/1910.01624.pdf

• A. Venzke, G. Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees for 
Neural Networks.  Best Student Paper Award at IEEE SmartGridComm 2020.[ .pdf | slides |  video ]

• G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. 
Presented at the Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf

• S. Chevalier, S. Chatzivasileiadis. Global Performance Guarantees for Neural Network Models of AC 
Power Flow. https://arxiv.org/pdf/2211.07125.pdf

• R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of Neural Networks. 
https://arxiv.org/pdf/2212.10930.pdf

• J. Stiasny, S. Chevalier, R. Nellikkath, B. Sævarsson, S. Chatzivasileiadis. Closing the Loop: A Framework 
for Trustworthy Machine Learning in Power Systems. Accepted to 2022 iREP Symposium - Bulk Power 
System Dynamics and Control - XI (iREP). Banff, Canada. 2022. [ paper | code ]

All publications available at: 
www.chatziva.com/publications.html

Some code available at:
www.chatziva.com/downloads.html

Article without any equations 
S. Chatzivasileiadis, A. Venzke, J. Stiasny and 
G. Misyris, "Machine Learning in Power 
Systems: Is It Time to Trust It?," in IEEE 
Power and Energy Magazine, vol. 20, no. 3, 
pp. 32-41, May-June 2022 [ .pdf ]
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https://arxiv.org/pdf/1911.03737.pdf
https://arxiv.org/pdf/2211.07125.pdf
https://arxiv.org/pdf/2212.10930.pdf
https://arxiv.org/abs/2203.07505
https://github.com/jbesty/irep_2022_closing_the_loop
http://www.chatziva.com/publications.html
http://www.chatziva.com/downloads.html
https://ieeexplore.ieee.org/document/9761145
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