

Chance-Constrained AC Optimal Power Flow Integrating HVDC Lines and Controllability

Andreas Venzke*, Lejla Halilbasic*, Adelie Barre*, Line Roald†, Spyros Chatzivasileiadis*

*Center for Electric Power and Energy, Technical University of Denmark (DTU)
†Department of Electrical and Computer Engineering, University of Wisconsin-Madison

Outline

- Motivation
- Chance Constrained AC Optimal Power Flow
- Including HVDC Lines and Controllability
- Iterative Solution Algorithm
- Simulation Results
- Conclusion

Motivation

- High RES penetration increases uncertainty in power system operation
- North Sea Wind Shore Power Hub

- Goal of this work
 - chance constraints to address uncertainty
 - incorporate HVDC lines and controllability
 - maintain computational tractability

Source: northseawindpowerhub.eu

multiDC – www.multi-dc.eu

Innovative Methods for Optimal Operation of Multiple HVDC Connections and Grids

- Innovation Fund Denmark Grand Solutions
- Partners:
 - Two neighboring TSOs: Energinet, Svenska kraftnät
 - Three universities:
 DTU, KTH, Univ. of Liege
 - One major manufacturer: ABB
 - Advisory Board: RTE, Nordic RSCI
- 4.2 million USD
- 4 years; Start May 1, 2017

The three pillars of multiDC

Robust control of near-zero inertia systems

Coordinated control of AC/DC systems

Market integration of meshed HVDC connections

Implementation at PowerlabDK

Chance Constrained AC-OPF

• Chance constraints: define maximum allowable constraint violation probability for forecast errors ω

Chance Constrained AC-OPF

DTU

- Chance constraints: define maximum allowable constraint violation probability for forecast errors ω
- AC-OPF with chance constraints for state variables
 x = {P \cap V \textit{\te

$$\mathbf{x} = \{P, Q, V, \theta\}$$

$$\min_{\mathbf{x}} \quad \mathbf{c_2^T P_G^2} + \mathbf{c_1^T P_G} + \mathbf{c_0}$$

s.t.
$$f_i(\mathbf{x}) = 0$$

$$\mathbb{P}(g_i(\tilde{\mathbf{x}}(\omega)) \le 0) \ge 1 - \epsilon$$
, for $i = 1, ..., m$.

for
$$i = 1, \ldots, n$$

Contains

Including HVDC Lines and Controllability

- HVDC model includes
 - active and reactive power capability
 - constant loss term

Including HVDC Lines and Controllability

• HVDC corrective control of active power set-point to react to forecast errors with HVDC participation factors β

Iterative Solution Algorithm – 1

- Chance constrained AC-OPF includes for both AC and DC systems
 - Equality constraints
 - Inequality constraints with uncertainty margins
- Uncertainty margins λ depend on
 - Optimized system state x
 - Generator and HVDC participation factors α , β
 - Distribution of forecast errors ω

$$\min_{\mathbf{x}} \quad \mathbf{c_2^T P_G^2} + \mathbf{c_1^T P_G} + \mathbf{c_0}$$
s.t.
$$\mathbf{f^{ac}(x)} = 0$$

$$\mathbf{f^{dc}(P_{HVDC})} = 0$$

$$\mathbf{x} \leq \mathbf{x^{max}} - \lambda^{\mathbf{x}}(\alpha, \beta)$$

$$\mathbf{x} \geq \mathbf{x^{min}} + \lambda^{\mathbf{x}}(\alpha, \beta)$$

Iterative Solution Algorithm – 1

- The resulting optimization problem is highly non-convex
 - > To achieve tractability, we make some assumptions!
- (1) To model the effect of forecast errors on the operating system state x_0 , we use the **first order Taylor expansion** Γ

$$x(\omega) = x_0 + \omega \Gamma_{x_0}$$

- (2) We assume control policies are **affine** in the uncertainty ω for both generator and HVDC active power
- (3) We assume forecast errors ω follow a **Gaussian** distribution
- \rightarrow Due to (1) (3), analytical reformulation of chance constraints possible

Iterative Solution Algorithm – 3

• We extend an existing computationally efficient **iterative** solution algorithm (Schmidli et al., PES GM 2016, Roald et al., TPRWS, 2018):

Step 0: Initialize $\lambda^1 := 0, k = 0$.

Step 1: Set k = k + 1: Solve CC-AC-OPF for λ^k .

Step 2: Based on α^k , β^k , x^k , compute $\Gamma_{\!\!\!\!\chi^k}$. Then include λ^{k+1} as function of α , β in CC-AC-OPF.

Step 3: If $\left|\lambda^{k+1} - \lambda^k\right|_{\infty} \le \rho$, terminate. Otherwise, go to Step 1.

• Optimizing over generator, HVDC participation factors α , β under assumptions (1)–(3) with iterative solution algorithm lead to **tractable** second-order cone chance constraints

Simulation Setup

- 10 bus system
 - with 2 wind farms
 - realistic wind forecast data
 - Line from 2 to bus 10 is congested
 - $\epsilon = 5\%$
- Case A: no HVDC line
- Case B: congested line is replaced with HVDC line

 \rightarrow Comparison of AC-OPF without considering uncertainty, CC-AC-OPF with fixed and optimized α , β

no HVDC: optimizing generator participation factors reduces cost of uncertainty

- ullet Optimizing lpha does not tighten cheap generators limits
- Cost of uncertainty reduced from 2.03% to 0.79%

HVDC eliminates cost of uncertainty

TABLE II
EMPIRICAL CONSTRAINT VIOLATION PROBABILITY FOR 10 BUS TEST
CASE WITH HVDC LINE

**	
-	
**	

Constraint limits on	P	Q	V	$\mathbf{P}_{ ext{line}}$	$\mathbf{P}_{\mathrm{HVDC}}$			
In-sample analysis with 10'000 samples (%)								
AC-OPF (w/o uncertainty) CC-AC-OPF (fixed α and β) CC-AC-OPF (opt. α and β)	50.5 5 .1 0.9	0.0 0.0 0.0	45.3 3.8 3.9	12.4 3.8 3.5	0.0 0.0 0.0			
Out-of-sample analysis with 10'000 samples (%)								
AC-OPF (w/o uncertainty) CC-AC-OPF (fixed α and β) CC-AC-OPF (opt. α and β)	43.2 5.8 0.4	0.0 0.0 0.0	47.8 3.4 3.2	11.5 3.9 3.8	0.0 0.0 0.0			

Not considering uncertainty can lead to large violations!

- By optimizing the generator and HVDC participation factors α , β cost of uncertainty is reduced from **2.2%** to **0.0%**
- CC-AC-OPF (opt. α and β) complies with the violation probability of 5% in- and out-of-sample

Conclusion

- We extended an iterative chance-constrained AC-OPF to include
 - a) HVDC lines and HVDC corrective control policies
 - b) optimization of both generator and HVDC participation factors
- Simulation results using realistic forecast data show
 - a) the cost reduction by utilizing HVDC and generator controllability
 - b) compliance in- and out-of-sample with target constraint violation probability
- Future work includes data-driven approaches

Questions?

MULTI-DC - controlling the power flows

http://www.multi-dc.eu/

www.chatziva.com

For further reference:

Venzke, A., & Chatzivasileiadis, S. (2018). Convex Relaxations of Probabilistic AC Optimal Power Flow for Interconnected AC and HVDC Grids. *arXiv preprint arXiv:1804.00035*. https://arxiv.org/pdf/1804.00035.pdf

Halilbašić, L., Thams, F., Venzke, A., Chatzivasileiadis, S., & Pinson, P. (2018). Data-driven Security-Constrained AC-OPF for Operations and Markets. *2018 Power Systems Computation Conference (PSCC)*

Simulation Results – Case A

TABLE I
EMPIRICAL CONSTRAINT VIOLATION PROBABILITY FOR 10 BUS TEST
CASE WITHOUT HVDC LINE

Constraint limits on	P	Q	V	\mathbf{P}_{line}				
In-sample analysis with 10'000 samples (%)								
AC-OPF (w/o uncertainty)	49.0	0.0	6.7	49.7				
CC-AC-OPF (fixed α)	5.3	0.0	2.8	5.3				
CC-AC-OPF (opt. α)	4.9	0.0	2.9	4.9				
Out-of-sample analysis with 10'000 samples (%)								
AC-OPF (w/o uncertainty)	43.2	0.0	4.6	49.2				
CC-AC-OPF (fixed α)	5.8	0.0	3.4	6.1				
CC-AC-OPF (opt. α)	5.8	0.0	3.4	5.6				

Including HVDC Lines and Controllability

- HVDC model includes
 - active and reactive power capability
 - constant loss term

 HVDC corrective control of active power set-point to react to forecast errors with HVDC participation factors β

