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And many thanks to the European Research
Council for funding this research
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L]
+ 18 g0g800,

European Research Council

Established by the European Commission
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Al and Energy:
two of the Sectors with the
highest growth potential
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Al is already creating value in Energy Systems

Load Forecasting

Weather Forecasting

Predictive Maintenance

Energy Trading (forecasting
of prices or quantities)
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1. Large Language Models

— Process massive
amounts of texts (e.g.
regulations, manuals,
procedures, etc)

— Virtual assistant:
Helping maintenance
technicians with step-
by-step instructions

2. Foundational Models

— Support for decision
making

And many more

7 October 2025 DTU Wind
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But Al can do alot more things

A tomie {

I wonder how much money OpenAl has lost in electricity costs from
people saying “please” and “thank you” to their models.

ﬂ Sam Altman @ E

tens of millions of dollars well spent--you never know

@evolving.ai
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But: Would you ever trust Al to run your
electricity network?
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Machine Learning (ML) Barriers for Power systems

i

Input: _ secure/

insecure

black box

Operating point

1. Whywould we use a “black box” to decide about a
safety-critical application?

2.  Neural Networks performance metricis “Accuracy”.
Accuracy is a purely statistical performance metric.
Who guarantees that the Neural Network can handle well
previously unseen operating points?

3. GoodAl Tools need good data. Why would we depend on
discrete and incomplete data, when we have developed
detailed physical models over the past 100 years?
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Machine Learning (ML) Barriers for Power systems
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black box . /
INsecure
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Trustworthy Al

Neural Network
verification:
guarantees for the NN
performance!

Physics-Informed
Neural Networks:
potential to deliver tools
that are 10x-100x-1000x
faster!
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Physics-Informed Neural
Networks for Power Systems
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What is the challenge?

« Assume we operate the Australian Grid and need 7
to eliminate the blackout risk for the next day. v

e

« We need simulations to assess therisk and devise
mitigation strategies.

; )
s
T { i
- Simulating 20 seconds of the dynamic behavior of }?M . ?}
the Australian Grid requires 12 minutes with a
current state-of-the-art tool. :
i

« Inasystem of hundreds of nodes, there are
1,000s of potential contingencies, and 100s of

operating points that appear ina day. . Performing such atask every day s
. L Impossible.
« Suppose we check just the 100 most critical
disturbances for 5 hopefully representative . Ourgoalis to bring this time down from 4
operating points. This requires non-stop days to 1 hour (100x speedup)

simulations for 4 days.

7 October 2025
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= Physics-Informed Neural Networks (PINNs)
N
« Why can Neural Networks be faster than
conventional simulation tools? 10x-100x-1'000x faster solution,
— Conventional tools need to run iterative methods to depending on the application

approximate the solution of differential equations

— For Neural Networks, it is a forward matrix

multiplication (as long as they are accurate enough) Seem to be achieving significant speedups
for partial differential equations

(e.g. computational fluid dynamics)

« Whatis the benefit of PINNs over standard NNs?

— PINNs do not need large amounts of training data. They
learn from the physical models included in training.

- No need to spend (a lot of) time on generating data or
depend onincomplete data

_/
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= Physics-Informed Neural Networks for Power Systems
“Original”
Loss function Exact - - - Predicted
P = 0.1? [p.u.]' .P = l].l.S [p.u.]'
min 1 Z 0 — 8|+ 1 Z F(0)) ”
Wb 1% i€EN N i€Ny d|
(6a) 0.5
st. 0=NN(t. P, W.b) (6h) " |
. 05 . 05 0 5 10 15 20
o = T 0 = e (6¢) -
£(5) = Mb+ Do + Asind — P, (6d) 0.2
0f -
-0.2

0 5 10 15 20
Time [s] Time [s]

G.S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural

Networks for Power Systems. Presented at the Best Paper Session

of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf
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o °
= Physics-Informed Neural Networks for Power Systems
“Original” “Physics-Informed”
Loss function term Exact — -~ Predicted
\ / P=0.17 [p.u.] P =0.18 [p.u.]
1 A - e | | ** =<1 |
Wb [N, EXA: 0=, g\;f 700 (|
(6a) 0.5
st. 0=NN(t. P, W.b) (6h) " |
. 88 5 0 5 10 15 20
f(0) = Md+ Db+ Asind — P, | (6d)
/ —
Swing equation

Time [s] Time [s]
G.S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural
Networks for Power Systems. Presented at the Best Paper Session
of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf
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== Physics-Informed NNs 100x faster than Classical numerical solvers
1 o 0O
10 16 O O O O O & @ R .
{ __ Classical
o
solvers
= 10-2 | . o .« o ® o © ; ° (e.g. Runge-Kutta)
¥ (0] o o) w,
2 L o »
T | The further ahead we look in time,
Z 10-3 4 the larger t/?e computational
| l aadvantage /s
104 :§ % ? ? ? <:> <:> ? ? ? } PINNs
_:::.+ A f l‘l‘llllf f f lfl:ilf A. ::1? A‘;
0.01s O.1s 1s 10s

Prediction time ¢ [s]

Results from 11-bus and 39-bus

J. Stiasny, S. Chatzivasileiadis, Physics-Informed Neural Networks for Time-
Domain Simulations: Accuracy, Computational Cost, and Flexibility
https://arxiv.org/abs/2303.08994 [ code ]

7 October 2025
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But, there is a trade-off. The further we look ahead in
time, the more difficult the learning task becomes

Learning takes longer
PINN accuracy drops

What shall we do?
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¥ How can we reduce training time and improve
“~  performance? P =0.17 [p.u.]
1.3 ' '
= |1
1. Trainforashorter time period but for a E
wide range of initial conditions < 0.5
2 seconds
2. UsethePINNinarecurrentfashion 0

0 3 10 15 20

t=t, t=t,+2s

v

w [rad/s]
S o
S N B
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How can we reduce training time and improve
performance? P =0.17 [p.u.]

— |

W

1. Trainfor ashortertime period but for a
wide range of initial conditions

2. UsethePINN inarecurrentfashion

2 seconds

15 20
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DTU ROA with time from ODE for a = 0.1 DTU Wind
o

== = 2 Simulations for Wind Farms:
40 &
£ : : : : .
Electro- > 5 Estimating the Region of Attraction of a Wind
magnetic v 2 Farm Controller
Transient ° 045 O
(EMT) ~207 0.30 g
Simulation 5 . Collaboration with @rsted
E — Estimating the region of attraction of controllersis
—60 - 0.00 . . .
an important part of the wind farm design process
- Goal: Determine the best set of controller
60 .
0o parameters (controller tuning)
40 N
0.75 %
20 060 D . Training PINNs with GPUs
s 0 2
0.45 g
PINN —201 0.30 g
—40 7 0.15 %
g R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, |. Murzakhanov, S. Chatzivasileiadis,
—60 0.00 =

Physics-Informed Neural Networks for Phase Locked Loop Transient Stability
Assessment, PSCC 2024 [ https://arxiv.org/abs/2303.12116 ]
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S million points with PINN

ROA with time from PINN for a = 0.1

DTU Wind

Simulations for Wind Farms:

Estimating the Region of Attraction of a Wind
Farm Controller

0.96

0.84

0.72

0.60

0.48

0.36

0.24

0.12

0.00

Time to stable equilibrium (s)

« Evaluation of 5 million points

. EMT: ~2days @ DTUHPC "

« PINNs: 90 minutes for
training and 30 minutes

. 25x - 100x faster

for evaluation

« Added benefit: once trained,

PINN canrunonalaptop

R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, |. Murzakhanov, S. Chatzivasileiadis,
Physics—Informed Neural Networks for Phase Locked Loop Transient Stability
Assessment, PSCC 2024 [ https://arxiv.org/abs/2303.12116 ]

7 October 2025
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So, what can we do with PINNs?

i

1. Integrate them in existing commercial simulators and accelerate
them

2. Create a PINN-based Simulator 2 PINNSIim

7 October 2025 Spyros Chatzivasileiadis — Trustworthy Al for Power Systems
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Integrating 1 PINN in IEEE 30-Bus System:
Simulation error reduces (for the same time step)

i

n .
A — _ '+ Traditional:
wm Traditional msm Hybrid | [ \ | ,

1 | . - 6conventionally

[\I modelled
synchronous
machines

.| Hybrid:

- TPINN

U|| - 5 conventionally
| 1 modelled

At = 20[ms] I |J lLJ synchronous

' machines

Errorin Frequency of Gen.2
-)
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Do you want to create your own PINNs?

i

Open-source Modular Python
Toolbox! Components:

. . - ODE definition & parameter configuration
GitHub/radiakos/PowerPINN

- Dataset generation (trajectories +
collocation)

« Preprocessing & sampling controls
« PINN training loop (PyTorch, Hydra, Wandb)
. Evaluation &visualization

I. Karampinis, P. Ellinas, I. Ventura-Nadal, R. Nellikkath, S. Chatzivasileiadis, A
Toolbox for Physics-Informed Neural Networks in Power Systems, IEEE
Powertech 2025, https://arxiv.org/pdf/2502.06412
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https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://arxiv.org/pdf/2502.06412

DTU Wind

=
—
—

i

Results - PINNs trained from the toolbox

Synchronous ottt 0.2 _
machine [ SM Sl
with 9 states O, Of '

............. o0

0 > 10 15 20

1trajectory 50 trajectories 500 trajectories
ODE solver  10.81ms 54.06ms 540.61ms
PINN 1.95ms (x5.5) 3.82ms (x14) 8.59ms (x63)

Key point: PINN scales massively better due to GPU parallelization

7 October 2025 Spyros Chatzivasileiadis — Trustworthy Al for Power Systems
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Vision (Part )

Accelerate Power System Time-Domain
Simulations in Commercial Tools

1. Create atool that can assess which
components will benefit by being
replaced with a PINN (or, an ML model, in
general)

2. Lettheuserdecideif they wantto
“optimize” the simulator

3. Runthe simulation with the “optimized”
components, integrating PINNs in a plug-
and-play fashion where necessary

Physics-Informed Neural Networks for Power Systems:

DTU Wind

First stepsin thatdirection:

l. Ventura, J. Stiasny, S. Chatzivasileiadis, Physics-Informed Neural
Networks: a Plug and Play Integration into Power System Dynamic
Simulations. Electric Power Systems Research, vol. 248, 111885, 2025
https://arxiv.org/abs/2404.13325

|. Karampinis, P. Ellinas, I. Ventura-Nadal, R. Nellikkath, S. Chatzivasileiadis, A
Toolbox for Physics-Informed Neural Networks in Power Systems, IEEE
Powertech 2025, https://arxiv.org/pdf/2502.06412

l. Ventura-Nadal, R. Nelikkath, S. Chatzivasileiadis, Physics-Informed Neural
Networks in Power System Dynamics: Improving Simulation Accuracy, IEEE
Powertech 2025, https://arxiv.org/pdf/2501.17621
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If we want to create a PINN-based simulator....

i

Are PINNs scalable?

Can we have a single PINN for 1,000 buses?

Learning takes longer
PINN accuracy drops

Short answer: probably not

What shall we do?

7 October 2025 Spyros Chatzivasileiadis — Trustwort hy Al for Power Systems



=
=
—

i

Vision (Part 2)

PINNSim: A modular power system
time-domain simulator

— Allcomponents can be replaced by PINNs

— Alibrary of component models
Implemented with Neural Networks

— “Drag’'n’drop” to create your system

« Novelty: A new algorithm that integrates
iIndividual PINNs in a common
simulation framework

« Acompletely new way of simulation
which can be 10x-100x faster

Awsz [He|

Awsz [Hz|

0.4

0.2 +

—0.2 +

—0.4

DTU Wind

Physics-Informed Neural Networks for Power Systems:

—&— PINNSim  —%— Trapezoidal === Ground truth

At =0.05s

At =0.25s

(o
b2
b2
o

0.5 1 1.
Time ¢t [s]

Very first version of PINNSim simulation engine:

J. Stiasny, B. Zhang, S. Chatzivasileiadis, PINNSim: A Simulator for Power System
Dynamics based on Physics-Informed Neural Networks, PSCC 2024.
https://arxiv.org/abs/2303.10256

7 October 2025 DTU Wind
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Are PINNs Trustworthy?

i

- They are as trustworthy as any reduced-order model
— Most reduced-order models come with no guarantees about worst-case violation errors

— But, reduced-order models come from first principles, so we have picked the equations
that are relevant to us 2we have an intuition which dynamic phenomena we capture and
which not

- Work on verifying PINNs
— If successful, for the first time we will have reduced-order dynamic models
— Major challenge: how do you verify (= optimize) through differential equations?

7 October 2025 Spyros Chatzivasileiadis — Trustworthy Al for Power Systems
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Physics-Informed Neural Networks for Power Systems:

Vision (Part 3)

Verify PINNs

— For thefirst time, deliver a worst-case
guarantee of the PINN approximation

— Deliver ML Surrogate Models with
approximation error guarantees

Efficient Error Certification for Physics-Informed Neural Networks

Francisco Eiras' Adel Bibi' Rudy Bunel® Krishnamurthy Dj Dvijotham* Philip H.S. Torr !
M. Pawan Kumar?

Abstract

Recent work provides promising evidence that
Physics-Informed Neural Networks (PINN) can
efficiently solve partial differential equations
(PDE). However, previous works have failed to
provide guarantees on the worsi-case residual er-
ror of a PINM across the spatio-temporal domain

a measure akin to the tolerance of numerical
solvers — focusing instead on point-wise compar-
isons between their solution and the ones obtained
by a solver on a set of inputs. In real-world ap-

mentioned challenge through physics-informed neural net-

works (PINN) (Raissi et al., 2019a; Sun et al., 2020; Pang

et al., 2019). For example, the Diffusion-Sorption equa-

tion — which has real-world applications in the modeling of
groundwater contaminant transport — takes 59.83s to solve

per inference point using a classical PDE solver, while infer-

ence in its PINN version from Takamoto et al. (2022) takes
only 2.7 x 105, a speed-up of more than 10* times.

The parameters of a PINN are estimated by minimizing
the residual of the given PDE. together with its initial and
boundary conditions, over a set of spatio-temporal training

Correctness Verification of Neural Networks Approximating Differential
Equations

Petros Ellinas ! Rahul Nellikath ' Ignasi Ventura ' Jochen Stiasny | Spyros Chatzivasileiadis '

Abstract

Verification of Neural Networks (NNs) that ap-
proximate the solution of Partial Differential
Equations (PDEs) is a major milestone towards
enhancing their trustworthiness and accelerating
their deployment, especially for safety-critical sys-
tems. If successful, such NNs can become integral
parts of simulation software tools which can accel-
erate the simulation of complex dynamic systems
maore than 100 times. However, the verification of
these functions poses major challenges: it is not

providing a formal bound on the lowest accuracy across the
relevant input domain. The concept behind correctness guar-
antees involves determining the worst-case approximation
error in the input domain D and it can be formulated as an
optimization problem

max u(z) — uglz)|, (0

where u(z) is the ground truth solution, and wg(z) is the
NN function approximation with weights 8. Here, = £
D is a point in the input domain . The argument that

mavimirar {1 indicatac whars tha anneayimator hac ths

DTU Wind

F.Eiras, A. Bibi, R. Bunel, K. Dvijotham, P. Torr, M. P. Kumar, Efficient Error Certification for
Physics-Informed Neural Networks, ICML 2024, https://arxiv.org/pdf/2305.10157

P.Ellinas, R. Nellikkath, J. Stiasny, S. Chatzivasileiadis, Correctness Verification of Neural
Networks Approximating Differential Equations, https://arxiv.org/abs/2402.07621
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What would you do to make Al
trustworthy?
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= Making Al Trustworthy: My View

Verify Al
Making it safe to deploy as is

Performance

Guarantees

1. your Al tool will never
violate the voltage
constraints

2. Or,your Al tool will violate
the voltage constraint by
XX % in the worst-case

European Research Council

veriphied.ai  gj-effect.eu/
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= Making Al Trustworthy: My View

Verify Al
Making it safe to deploy as is

Performance

Guarantees

1. your Al tool will never
violate the voltage
constraints

2. Or,your Al tool will violate
the voltage constraint by
XX % in the worst-case

Y Horizon Europe Y

European Research Council

veriphied.ai  gj-effect.eu/

Safe Al
by-design

Design Al
controllers
that
guarantee
asymptotic
stability

DTU Wind

7 October 2025
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DTU DTU Wind
= Making Al Trustworthy: My View

Verify Al Safe Al Use Al as Decision Support
Making it safe to deploy as is by-design G
% Performance .
Design Al Use the Al outputasa
Guarantees
1 Al too] wil controllers warm-start foran
. your ool wlll never . . .
violate the voltage that optimizer (or to predict 1ake th? Al QUtpUt
constraints guarantee the active constraints) andprojectittoa
2. Or,your Al tool will violate asymptotic feasible space
the voltage constraint by tabilit
XX % in the worst-case stabllity
Use the Al to screen
e millions of scenarios.
| Assess with conventional
veriphied.ai  aj-effect.eu/ tools the most critical ones
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A lot of recent developments for trustworthy Al

o April2021: The EU is promoting rules for
Trustworthy Al AN

- Visit of Ms. Margrethe Vestagerat DTU

- EU Commissioner of Competition, Executive
Vice President of "A Europe Fit for the Digital 2 AR

- In April 2021, Ms. Vestager proposed new | N %aui
rules and actions aiming to turn Europe into 1
the global hub for trustworthy Artificial

Intelligence TR l

* August 2024: Al Act is an official EU Regulation :

Spyros Chatzivasileiadis — Trustworthy Al for Power Systems
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A lot of recent developments for trustworthy Al

- World-leading optimization tool: Starting with Gurobi 10.0, Gurobi supports Neural Network
verification since 2023

Gurobi Optimizer

Gurobi 10.0 also includes the following advances in the underlying algorithmic framework:
& New network simplex algorithm — Greatly speeds up solving LPs with network structure.

& New heuristic for QUBO models, which can arise in quantum optimization — Improves Gurobi's
ability to quickly find good feasible solutions for quadratic unconstrained Boolean optimization

problems

& Significant performance gains on MIPs that contain machine learning models — Resulis in a
more than 10x improvement on certain models that contain embedded neural networks with
RelU activation functions.

7 October 2025 DTU Wind Spyros Chatzivasileiadis — Trustworthy Al for Power Systems
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6th International Verification
of Neural Networks
Competition (VNN-COMP'25)

https://sites.google.com/view/vnn2025

DTU Wind

A lot of recent developments for trustworthy Al

« Tailored MILP solvers for NN Verification

— Alpha-beta-crown is the winning algorithm
— Over 100x speedup

Focus is mostly on Image Classification/ Image

Recognition

- Key for medical applications such as recognition of
MRl images, for self-driving car applications, and
others

Recent focus on AC-Optimal Power Flow (NLP): an
effort to submit models related to power systems,
so that participants can test and develop
verification algorithms with focus on power
systems (we also tried to submit some power system
models, but we did not manage to complete our effort)

7 October 2025 Spyros Chatzivasileiadis — Trustworthy Al for Power Systems
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DC-Optimal Power Flow

Table 1. Performance comparison of Gurobi and
a, -CROWN solvers on the IEEE 300-bus test case.
Gen scale ) Gurobi o, 3-CROWN

Gap, % Time, sec Time, sec

0.8 X 26.9 43 6.00

0.9 X 79.0 37 5.60

1.0 X 150 35 5.71

1.1 X 511 39 5.58

1.2 v 1726 >3600 (dnf) 18.03

a,-CROWN 7x-300x faster than Gurobi

DTU Wind

Accelerating Verification: a,f-CROWN for

- We formulated the power system
verification problem in a way that can be
solved by a,-CROWN.

« o,-CROWN now verifies for multiple line
flow violations and not only one at a time

« o,-CROWN much faster than Gurobi 10.0

S. Chevalier, I. Murzakhanov, S. Chatzivasileiadis, GPU-
Accelerated Verification of Machine Learning Models for
Power Systems, Best Paper Award at HICSS (Hawaii
International Conferences on Systems Sciences), Jan.
2024 https://arxiv.org/pdf/2306.10617
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7 October 2025

DTU Wind

A lot of recent developments for trustworthy Al

. Interpretable Al
- SHAP: Shapley Additive Explanations

« Sensitivity Factors that explain the output of a
model

https://shap.readthedocs.io/en/latest/

Predicting the net production of PV+Load

High
HLoad . ..»
HPow .
Irra
PTemp
DPow
STemp
. . T . Low

-4 -3 -2 -1 0 1 2
SHAP value (impact on model output)

Y.Lu, I. Murzakhanov, S. Chatzivasileiadis, Neural network interpretability for
forecasting of aggregated renewable generation. In IEEE SmartGridComm
2021, Aachen, Germany, October 2021.[ .pdf | code ]
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H. Shuai, F. Li, Physics-Informed Kolmogorov-Arnold Networks for

Power System Dynamics, https://arxiv.org/pdf/2408.06650

DTU Wind

Kolmogorov Arnold Networks

P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S.
Chatzivasileiadis, Physics-Informed Machine Learning for Power System Dynamics:
A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and
Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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Kolmogorov Arnold Networks

i

P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S.

Chatzivasileiadis, Physics-Inf d MachineL ing for P System D ics:
H. Shuai, F. Li, Physics-Informed Kolmogorov-Arnold Networks for atelvasiieiadis ySICS.S rrorme a.C ne earmng O FOWer Sys Qm YRamIcs
P Sustern D s hitos: . 4f/2408.06650 A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and
ower System Dynamics, https://arxiv.org/pdf/2408. Networks, Elsevier, 2025. https://doi.org/10.1016/i.segan.2025.101818
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Kolmogorov Arnold Networks

i

- KANs are potentially more interpretable than PINNs (less neurons, trained activation functions
which can give some insights)

INn our tests:
« KANs are more accurate than PINNs
« KANs are slower than PINNs

BerINN BB PI-KAN IO ODE Solver

6 250 -
6-10 =
200 2 g
= .10~ % -
o 410 150 2 E
E L O
_ 100 T
2-107° =2
50 E

. . . . ] ] [ ] .

2D 4D 6D 2D 4D 6D

P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S.
Chatzivasileiadis, Physics-Informed Machine Learning for Power System Dynamics:
A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and
Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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NE

European Research Council

Neural Network Verification and

Provable Worst-Case Guarantees
for Power Systems

Venzke, G. Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees for Neural Networks. Best
Student Paper Award at IEEE SmartGridComm 2020. https://arxiv.org/pdf/2006.11029.pdf

A.Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications.
In /EEE Transactions on Smart Grid,vol. 12, no.1, pp. 383-397, Jan. 2021, https://arxiv.org/pdf/1910.01624.pdf

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer
programming,” in International Conference on Learning Representations (ICLR 2019), 2019
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Guiding Application:

i

Optimal Power Flow with Neural Networks

(can apply to any optimal control problem)

Approaches proposed up to now
TN 5. Use the NN

W24 7

v e * 4
JY 2, %
Database of =
load setpoints (inputs) o
and optimal 2 o
5 Us - ,

generation dispatch
2. Train a neural network

u
35

(output)

~

1.Splitthe database ina
training set and a test set

3. Test the neural network

4.1s accuracy high enough?

Input:
Operating point

uy Was U,
RN 2 2
S
2
2
vl u
3 35 Us

w

Optimal
NN Output: setpomt
Optimal generator
dispatch

Extremely fast: up to
100x-1"000x faster
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Neural Network Verification: HOW? erc

i

1. Exact transformation: Convert the neural network to a set of linear
equations with binary variables

- The Neural Network can be included in a mixed-integer linear
optimization problem

2. Formulate an optimization problem and solve it = certificate for NN
behavior
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Lrelseesert

=  From Neural Networks to e
Mixed-Integer Linear Programming
Non-linear Linear weights . Most usual activation function: ReLU
activation
functions \ /
e RelLU: Rectifier Linear Unit
u W24 u
2 4
@ A
4 output
3
Uus Usg >
W3s input
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DTU Non-linear Linear weights DTU Wind
=  From Neural Networks to N
Mixed-Integer Linear Programming G,
Ny
%Q, u . A

1.  ButRelLU can be transformed to a piecewise
linear function with binary variables

A

output

v

input
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=  FromNeural Networks to N
Mixed-Integer Linear Programming G,
Ny
AV i Q&

1.  ButRelLU can be transformed to a piecewise
linear function with binary variables

A

output

/
/
/

v

input
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DTU Non-linear Linear weights DTU Wind
=  From Neural Networks to AN
Mixed-Integer Linear Programming G,
Ry
Z \Mb

1.  ButRelLU can be transformed to a piecewise
linear function with binary variables

output | 2. I canencode all operations of a Neural Network
/ » to a system of linear equations with continuous

/, and binary variables

3. Icanintegrate allinformationencodedina
neural network inside an optimization
program

v

input
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Key Enabler: erc

our ability to represent the underlying ground truth =

i

Main idea:

- Take advantage of the ground truth representation we have, i.e. the power system
models

- Measure the performance of the Neural Network against the ground truth
— Does the Neural Network violate constraints?

- Determine the worst-case performance = provable worst-case guarantees
— Across the continuous input domain
— No Sampling
— Instead, we solve an optimization program

— Once “certified”, we can use directly the Neural Network (no need to re-run the
optimization program)
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Verify Maximum limit-violations

1. Maximum violation of generator limits

Vg — maX(f’g o prgnax’ pgin o f)ga O)

max g Example:
s.t. Agpq < by Convex polytope as input domain D 0.6 p3"™* < pg < 1.0pg™
P = NN(p4) Mixed-integer reformulation of trained NN Electric load setpoints vary
between 60% and 100% of

their rated value
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Worst violation over the
whole training dataset

(training+test set)

Our algorithm: provable
worst-case guarantee over
the whole input domain

Empirical Exact worst-case
lower bound guarantee

Test cases Vg Uline Vg Vline

(MW)  (MW) | (MW)  (MW)
case9
case30
case39
casebrs
casell8
casel62

case300

Uline

European Research Council

Maximum violation of
generator limits

Maximum violation of
line limits

7 October 2025
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Worst violation over the
whole training dataset

(training+test set)

Our algorithm: provable
worst-case guarantee over
the whole input domain

European Research Council

Vg Maximum violation of
generator limits

Maximum violation of

L; ) .
line  jine limits

Empirical Exact worst-case
lower bound guarantee

Test cases Vg Uline Vg Vline

(MW)  (MW) | (MW)  (MW)
case9
case30
case39
casebrs
casell8
casel62

case300 474.5 692.7 | 3658.5 3449.3 «

Over the whole input domain
violations can be much larger
(here ~7x) compared to what
has been estimated empirically
on the dataset

7 October 2025 DTU Wind
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DTU Worst violation over the || New algorithm: provable
oo whole training dataset | | worst-case guarantee over
Empirical Exact worst-case
lower bound guarantee
Test cases Vg Uline Vg Uline
(MW)  (MW) | (MW) (MW)

case9

case30

case39

European Research Council

Vg Maximum violation of
generator limits

Maximum violation of

L; ) .
line  jine limits

case57 | 4.2 0.0 | 237 0.0 [¢

casell8

casel6?

case300

We can now provide guarantees
that no NN output will violate
the line limits over the whole
input domain
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Max violation —> 100%

80%

60%

40%

20%

No violation — 0%
0.00 0.04

Training
Dataset: Useon a
Load Domain subdomain
[60%-100%]
Train

Train and use on
the same domain

Reducing the worst-case violations:
Train for a larger domain; deploy on a subdomain

* Pg Up Max Violation
< Pg Down Max Violation
Vm Up Max Violation

- Vm Down Max Violation

0.08 0.12 0.16
Input domain reduction

Use fora

only

Train

single point

DTU Wind

118-bus system
Non-Linear
Optimization
Problem
(AC-OPF)

Worst-case
violations appear to
be at the boundary
of the input domain
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DTU Wind

== Classification of Verification Methods
{ Classification of
Correctness Verification Methods

roooo- e - }
| { Probabilistic } : |' Deterministic }
| Verification | Verification
| not further discussed : |

Open-Source LA S ‘| !

. | |
Trustworthiness Toolbox [ Complete } { e ]
Verification
coming soon! |

Y L

Y

Bound-based } [ Sample-based

Sample-based J

( Lipschitz
N Envelope
Method Method
Reachability
] Method

P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S. Chatzivasileiadis, Physics-Informed
Machine Learning for Power System Dynamics: A Framework Incorporating Trustworthiness, Sustainable
Energy, Grids and Networks, Elsevier, 2025. https://doi.org/10.1016/].segan.2025.101818

-

Gradient
Attack Method

Sample-
Based Metrics
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Trustworthy Al for Power Systems: Vision

i

Al Testing and Experimentation Facility for Energy

. Establish a platform that verifies Al tools and certifies that they
comply with power system safety specifications

Y& Horizon Europe Y

Al-EFFECT EU project
Start: 1st October 2024

Participants: EPRI (Lead), DTU, TU Delft, Univ. Porto, BEOF,
TenneT, ENEL, and others

Al Standards: Create Standards for Al tools in Energy

Minimizing Worst-Case Violations of
Neural Networks

Rahul Nellikkath, Student Member, IEEE, Spyros Chatzivasileiadis, Senior Member, IEEE

Design a Neural Network Training Algorithm that
simulta neously delivers gua ra ntees of the Worst_case NN aci—Machine learning (ML) algorithms are remarkably  fast surogate functions in place of intractable cor

approximating complex 1 Most  bi-level optimization problems to make them cor

ining processes, however, are designed to deliver ML o, Gh1e [11], These developments have led re

ith good average performance, but do not offer any B ) s R
performa nce ces about their worst-case estimation error. For safety- [0cus on the development of “d':“"‘:c_d ML archi
systems such as power systems, this places a major barrier especially neural networks (NN), with improve

r adoption. So far, approaches could determine the worst- accuracy for power system applications. One of
lations of only frained ML algorithms. To the best of our

Y . . f. . o Ige, this is the first paper to introduce a neural network ing developments amons them ]\ for cx'.dmp].c.
- Example: “"Neural Network Training finished. ACcuracy 99.2%. b s peer o s s st stvok o Neurt Networs (18N wich
iance and minimum worst-case vielations. Using the physical equations governing the power flow inta

Worst-case violation of critical constraints: 10%.” o R O s s o LT TR —
R.Nellikkath, S. Chatzivasileiadis, Minimizing
worst-case violations for neural networks,
https://arxiv.org/abs/2212.10930
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Some Final Thoughts

- Physics-Informed Machine Learning has the potential
to accelerate computations by 10x-100x

« Integrate Physics-Informed Neural Networks in
commercial simulators

« PINNSIim: Create completely new simulation tools
based on PINNs

- Donot needasingle NN for the whole problem

- Let'swork with “Libraries of Neural Networks”,
similar to "Libraries of Models”
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i

Some Final Thoughts

. Physics-Informed Machine Learning has the potential * Trustworthy Alis necessary if we are to deploy itin

to accelerate computations by 10x-100x safety-critical systems
. Integrate Physics-Informed Neural Networks in « Neural Network Verification and Provable Worst-
commercial simulators Case Guarantees:

— can benchmark Al tools
« PINNSIim: Create completely new simulation tools
based on PINNs

- Donot needasingle NN for the whole problem

_ Let’s work with “Libraries of Neural Networks”, « Need for Testing Facilities that validate Al tools =
similar to ”Libraries of Models” towards Al standards

— (similar to what convex relaxations have done for
non-convex optimization programs)

Still, a lot of challenges our community needs to address:
- How can PINNs efficiently capture stiff dynamics?

- How can we scale NN verification for non-linear problems?
« ..andmany more

7 October 2025 DTU Wind
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Open-source Toolboxes

1. Generate your own training datasets!
GitHub/bastiengiraud/DSA-learn

GitHub

i

2. Train your own Physics-Informed Neural Networks!
GitHub/radiakos/PowerPINN

You can find them all in:
www.chatziva.com/downloads.html

3. Play witha PINN for Power System Dynamics!
Google Colab PINN Playground
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http://www.chatziva.com/downloads.html
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Thank you!

i

Spyros Chatzivasileiadis
Professor
www.chatziva.com
spchatz@dtu.dk
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