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Relevance to the ENTSO-e study
European Grid 2030 and 2050
• Run large-scale studies on a (reduced) ENTSO-e network of 7500 nodes, including 

TYNDP
• Assess impact of RES penetration and grid reinforcements on the nodal prices

European zonal markets (www.multi-dc.eu)
• Cost recovery of AC and HVDC losses: Develop a methodology to integrate both AC 

losses and HVDC losses in zonal markets

Redispatching (www.multi-dc.eu) (not in this presentation)
• Sharing reserves between areas to avoid redispatching due to N-1/low inertia

Data-driven Security-Constrained OPF
• Introduce a new market and operation framework that is scalable
• Can handle limitations such as uncertainty, flexible power flows, etc.
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Developing the Business-as-Usual Scenario

ENTSO-E TYNDP eHighway2050

2030 Grid
+

~2016 Load and 
installed RES

ENTSO-e statistical
factsheet 2016
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Developing the Business-as-Usual Scenario

ENTSO-E TYNDP eHighway2050

2030 Grid
+

~2016 Load and 
installed RES

Business-as-Usual
2030

Add 2030 projections: 
(EUCO30)
• +20% Load 
• +440% Offshore Wind 
• +80% Onshore Wind 
• +140% PV 

ENTSO-e statistical
factsheet 2016
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The Business-as-Usual Network 2030

• ~7500 nodes 
• 8900 AC lines 
• ~1000 transformers
• 1269 generators 
• 140 DC lines 
• 270 converters

Characteristics

RES installed capacity: 63%

160 Hydro power plants

40 PVs

290 Wind farms

60% of RES in the 
distribution network
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The Business-as-Usual Network 2030 

• ~7500 nodes 
• 8900 AC lines 
• ~1000 transformers
• 1269 generators 
• 140 DC lines 
• 270 converters

Characteristics

BaU
RES Penetration 49,16%
Load Shedding 0,37%

RES installed capacity: 
63%

160 Hydro power plants

40 PVs

290 Wind farms
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Best Paths: Scalability Assessment for 2030

AC Repowering HVDC AC & HVDC
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Transmission investments 
to increase RES penetration by 2030
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BaU2030 DC Scalability 1 DC Scalability 2 DC Scalability 3 DC Scalability 4
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• 50 DC lines (150 GW)
• 56 AC lines require upgrade (63.62 GW)
• 20/56 lines: <20% increase

Highest grid development stage, 
AC+DC upgrades: 56.06% 

Maximum possible RES penetration: 56.47%

Only DC: 
55.86%

Only AC: 
53.03%

BaU: 
52.85%
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Reducing operating costs by 2030
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BaU2030 DC Scalability 1 DC Scalability 2 DC Scalability 3 DC Scalability 4
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only DC
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Savings: 

6.3 B€/a
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DC Upgrade: Congestion Duration Curves 

Most of the new DC lines 
are used up to their limit 
more than 50% of the time
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Nodal prices in 2030 (work in progress, no upgrades)
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Nodal prices 2016 vs 2030 (work in progress)

12

• Increased RES presentation increases the variance of nodal prices

• Nodal prices follow a multi-modal distribution  from 3 modes to 4 modes

• Producer surplus decreases
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Main Takeaways
• Offshore wind capacity only deployable with additional corridors

• Controllable flows are required: DC upgrades have shown substantially better performance 

• Optimal grid development: AC & DC AC upgrades enable full potential of DC & vice versa 

• Transformer bottlenecks need to be considered

Nodal pricing (preliminary insights)

• France seems to experience often extremely high prices at certain regions

• Prices within the former UCTE synchronous areas 1 and 2 seem to be more uniform

• Increased RES presentation increases the variance of nodal prices

• Nodal prices follow a multi-modal distribution
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Market Integration of HVDC: Pricing losses

14
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• HVDC interconnectors:

• usually longer than AC interconnectors

• often connecting areas belonging to 
different TSOs (at least in Europe)

• As a result, the losses occurring on 
HVDC lines are not negligible, and the 
cost has to be shared among TSOs

• If price difference between areas is 
small, TSOs cannot recover the cost of 
HVDC losses, i.e. cost of losses higher than 
potential revenue

  Under construction
  Operative

Motivation
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• In 2017 the price difference between SE3 and 
DK1 has been zero for more than 5300 hours 
(61%), resulting in 1.2 M€ losses.

Source: https://www.nordpoolgroup.com/

NORWAY

SWEDEN

DENMARK

KONTISKAN

Some examples - Denmark

• In 2017 the price difference between DK1 and 
DK2 has been zero for more than 6400 hours 
(73%), resulting in 0.8 M€ losses.

• In 2017 the price difference between DK1 and 
NO2 has been zero for more than 4000 hours 
(47%), resulting in 3.2 M€ losses.

NORWAY

SWEDEN

DENMARK

SKAGERRAK

NORWAY

SWEDEN

DENMARK

GREAT-BELT
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• In 2017 the price difference between FI and
EE has been zero for more than 6600 hours
(76%), resulting in 3 M€ losses.

Source: https://www.nordpoolgroup.com/

Some examples - Finland

• In 2017 the price difference between FI and
SE3 has been zero for more than 8600 hours
(99%), resulting in 3.8 M€ losses.

• For these 5 HVDC interconnectors, losses amounts to 12 M€ per year.

• Considering the number of HVDC interconnectors and all the new
projects, this number is intended to grow significantly.

SWEDEN

FINLAND

ESTONIA

FENNOSKAN

SWEDEN

FINLAND

ESTLINK

ESTONIA
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• Losses are handled in a different way for AC and HVDC lines.

• For HVDC lines:

• To move from the explicit to the implicit method, a loss factor has to be included
in the market clearing algorithm.

• Is it a good idea to introduce a loss factor only for HVDC lines in meshed
grids?

EXPLICIT METHOD IMPLICIT METHOD

WITH LOSSES PRICE DIFFERENCE POWER 

EXCHANGES
WITHOUT LOSSES

POWER 

EXCHANGES
TSO

LF

Problem statement
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* Fingrid, Energinet, Statnett, Svenska Kraftnät, Analyses on the effects of implementing implicit grid losses in the Nordic CCR, April 2018

Implicit grid losses - Nordic CCR

LT

LV

EE

FI

DK1
SE4

SE3

SE2

SE1

NO1

NO2

NO5
NO3

NO4

DK2

• Nordic TSOs, April 2018: Analyses on the 
effects of implementing implicit grid 
losses in the Nordic CCR

• All simulations with implicit grid losses 
show an economic benefit

• One exception is FennoSkan

• The higher the number of lines with implicit 
losses implemented, the higher the benefit

EE

FI

SE3

SE2

SE1

NO1

NO2

NO5
NO3

NO4
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• Simple linear model

• Losses

~
~

𝑓𝑓𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

• Quadratic losses for HVDC converters 
and HVDC lines

• Losses are considered as an extra load 
equally shared by the sending and the 
receiving node

• Linearization of losses for their 
introduction in the market clearing 
algorithm

~

𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

HVDC line model
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Prices
without LF
($/MWh)

with LF
($/MWh)

Zone 1 10.00 10.00

Zone 2 10.00 10.00

Zone 3 10.00 10.38

Example: impact on prices

~~
1 2

3

292 MW

20$/MWh 10$/MWh

Prices
without LF
($/MWh)

with LF
($/MWh)

Zone 1 20.00 20.00

Zone 2 10.00 10.00

Zone 3 20.00 20.00

Prices
without LF
($/MWh)

with LF
($/MWh)

Zone 1 20.00 20.00

Zone 2 20.00 20.82

Zone 3 20.00 21.61

No Congestion
With Congestion  Loss is 
absorbed in the congestion rent

Inter-TSO compensation
2 DC lines: 

1-2, 2-3
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AREA 2AREA 1 AREA 3

Test case: IEEE RTS system
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For each area:

• 32 producers and 17 consumers

Flow-based market coupling

• Estimation of the PTDF matrix: 
marginal variations in one generator at 
a time

• Emulate how TSOs purchase the 
required power to cover their losses

• Equilibrium problem: each market 
participant seeks to maximize its profit

Test case: IEEE RTS system

A. Tosatto, T. Weckesser, S. Chatzivasileiadis, Market Integration of HVDC 
lines, Submitted. Available: https://arxiv.org/abs/1812.00734

https://arxiv.org/abs/1812.00734
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Loss factor AC losses HVDC losses

NO LF 254.6 MW 4.5 MW

HVDC LF 250.5 MW 2.2 MW

Δ Cost HVDC Δ Cost AC

84.58 $/h 151.39 $/h

NO LOSS FACTOR

391 MW864 MW

79 MW

36.11 $/MWh

36.11 $/MWh

36.11 $/MWh

25 MW

LOSS FACTOR

36.11 $/MWh

36.11 $/MWh

36.11 $/MWh

832 MW 425 MW

70 MW

Economic benefit: 235.97 $/h

Test case 1: some results

Cheap area Cheap area 

Expensive area Expensive area 
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Loss factor AC losses HVDC losses

NO 182.5 MW 6.9 MW

HVDC 186.9 MW 4.0 MW

Δ Cost HVDC Δ Cost AC

282.66 $/h -484.25 $/h

NO LOSS FACTOR

18 MW332 MW

121 MW

42.24 $/MWh

42.24 $/MWh

42.24 $/MWh

117 MW

LOSS FACTOR

42.24 $/MWh

43.96 $/MWh

44.69 $/MWh

352 MW 7 MW

150 MW

Economic loss: 201.59 $/h

66 MW

Test case 1: some results

Cheap area Cheap area 

Expensive area Expensive area 
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AC loss factors

Line 2-3

More info: 
A. Tosatto, T. Weckesser, S. 
Chatzivasileiadis, Market Integration of 
HVDC lines, available: 
https://arxiv.org/abs/1812.00734
www.multi-dc.eu

System emulating 
DK1, DK2, SE, NO

https://arxiv.org/abs/1812.00734
http://www.multi-dc.eu/
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• The results show that the introduction of
HVDC loss factors for this specific
system is beneficial for most of the
time.

• However, there are cases where the
social welfare is decreased (>14%).

• Theory guarantees that this does not
happen with LFs for both AC and DC
systems

• The introduction of AC-LFs double the
benefit.

Economic evaluation

More info: 
A. Tosatto, T. Weckesser, S. Chatzivasileiadis, 
Market Integration of HVDC lines, available: 
https://arxiv.org/abs/1812.00734
www.multi-dc.eu

https://arxiv.org/abs/1812.00734
http://www.multi-dc.eu/
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• Is it a good idea to introduce a loss 
factor only for HVDC lines in 
meshed grids?

• The HVDC loss factor can act 
positively or negatively w.r.t. the 
amount of system losses depending 
on the system under investigation. 

• If to be introduced in the market 
clearing algorithm, the 
recommendation is to consider the 
losses in both AC and DC systems.

Conclusion
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Data-driven Security-Constrained OPF

29
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The feasible space of power system operations

30

• Nonlinear and nonconvex

AC power flow equations

• Component limits

AC-OPF
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• Nonlinear and nonconvex AC 

power flow equations

• Component limits

+ Stability limits

The feasible space of power system operations
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• Nonlinear and nonconvex AC 

power flow equations

• Component limits

+ Other security criteria (e.g., N-1)

The feasible space of power system operations
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• Nonlinear and nonconvex AC power 

flow equations

• Component limits

+ Uncertainty ξ in nodal power 

injections

The feasible space of power system operations
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• Nonlinear and nonconvex AC power 

flow equations

• Component limits

+ Stability limits

+ Other security criteria (e.g., N-1)

+ Uncertainty ξ in nodal power injections

The feasible space of power system operations
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• Nonlinear and nonconvex AC power 

flow equations

• Component limits

+ Stability limits

+ Other security criteria (e.g., N-1)

+ Uncertainty ξ in nodal power 

injections

The feasible space of power system operations

with prob. “1-ε” 

with prob. “ε” 



DTU Center of Electric Power and Energy26 February 2019

Operational Challenges

36

• Identifying the boundary of the feasible

operating region 

• Incorporating the boundary in an 

optimization framework

• Finding the true optimal solution & 

maintaining computational efficiency
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How to encode the feasible operating region
for electricity markets? 

37

Security considerations live in 

AC space, but market is based

on DC approximations!
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How to encode feasible operating region
for electricity markets? 

38

TSO Market
NTC

Traditionally, TSOs define

Net-Transfer Capacities

Security considerations live in 

AC space, but market is based

on DC approximations!
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How to encode feasible operating region
for electricity markets? 

39

TSO Market
NTC

Traditionally, TSOs define

Net-Transfer Capacities

Security considerations live in 

AC space, but market is based

on DC approximations!
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Better but reality of power system operations is 
nonconvex! 

40

Improvements with Flow-Based

Market Coupling, 

but still a single convex region!
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Better but reality of power system operations is 
nonconvex! 

41

Improvements with Flow-Based

Market Coupling, 

but still a single convex region!
Figure from: KU Leuven Energy Institute, “EI Fact Sheet: Cross-border 
Electrcity Trading: Towards Flow-based Market Coupling,” 2015. 
[Online].Available: http://set.kuleuven.be/ei/factsheets
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Our proposal
• Pass the data! (not the line limits)

• TSOs have large amounts of data related to their daily contingency analysis calculations 
(RSCIs also collect and coordinate these analyses in a regional level)

• Instead of deciding on the interconnection flow limits to form a single convex region, let 
the market operator decide based on the “secure/insecure” status of an operating point

Benefits
• Market players have the true, larger (and non-convex) feasible area at their disposal 

possibility to determine a better (true) global optimum

• Uncertainty and security constraints incorporated in the data  extremely scalable 
optimization (MILP)

• Map AC limits to DC-OPF  eliminate redispatching
• Can apply to both zonal and nodal markets

42
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How does it work?

43

Database of secure and 
insecure operating 

points

{P,Q,V,θ,ζ}

Operating points provided 
by the TSOs through 

simulated and real data

Train a decision tree to 
classify secure and 

insecure regions

Exact reformulation to 
MILP
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Database of stable 
and unstable OPs

{P,Q,V,θ,ζ}

Decision 
Tree

Offline security assessment

stable 

unstable

Data-driven security-constrained OPF
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Database of stable 
and unstable OPs

{P,Q,V,θ,ζ}

Decision 
Tree

Offline security assessment

stable 

unstable

Data-driven security-constrained OPF

Partitioning the secure operating region 
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Data-driven security-constrained OPF

46

Database of stable 
and unstable OPs

{P,Q,V,θ,ζ}

Decision 
Tree

Offline security assessment

stable 

unstable

Partitioning the secure operating region 
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Data-driven security-constrained OPF

47

Database of stable 
and unstable OPs

{P,Q,V,θ,ζ}

Decision 
Tree

Offline security assessment

stable 

unstable

Partitioning the secure operating region 
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Data-driven security-constrained OPF

48

Database of stable 
and unstable OPs

{P,Q,V,θ,ζ}

Decision 
Tree

Offline security assessment Optimization

stable 

unstable

Integer Programming to 
incorporate partitions (DT)

• DC-OPF (MILP)

• AC-OPF (MINLP)

• Relaxation (MIQCP, MISOCP)

• Each leaf is a convex region

• FBMC corresponds to the leaf that 
maps the largest convex region

• Here, each convex region includes 
security constraints (N-1 and other) 
we can include N-1 in zonal markets
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We gain ~22% of the feasible space using data and 
Mixed Integer Programming 

49

Largest convex region 

covers ~78%



DTU Center of Electric Power and Energy26 February 2019

MIP + convex AC-OPF approximation finds better
solutions than nonconvex problem!  

50

Optimum located at 
boundary of considered
security region

L. Halilbašić, F. Thams, A. Venzke, S. Chatzivasileiadis, and P. Pinson, ”Data-driven security-constrained AC-OPF for operations and markets,” 
in 2018 Power Systems Computation Conference (PSCC), 2018. 
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Works also for DC-OPF (MILP): 
Market dispatch is N-1 secure and stable

Eliminate redispatching costs

51

• Data-driven SC-OPF for markets: DC-OPF 
becomes MILP
– But, MILP is already included in market 

software (e.g. Euphemia, for block offers, 
etc.)

– Efficient MILP solvers already existing

Redispatching costs: over 400 Million 
Euros in a year, just for Germany
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Works also for DC-OPF (MILP): 
Market dispatch is N-1 secure and stable

all eigenvalues on the left-hand side

52
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Efficient Database Generation

• Modular and highly efficient algorithm

• Can accommodate numerous definitions of power system security (e.g. N-1, N-k, 
small-signal stability, voltage stability, transient stability, or a combination of 
them)

• 10-20 times faster than existing state-of-the-art approaches

• Our use case: N-1 security + small-signal stability

• Generated Database for NESTA 162-bus system online available!
https://github.com/johnnyDEDK/OPs_Nesta162Bus (>500,000 points)

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ”Efficient database generation for data-driven security assessment of 
power systems”. Accepted in IEEE Trans. Power Systems, 2019. https://www.arxiv.org/abs/1806.0107.pdf

53

https://github.com/johnnyDEDK/OPs_Nesta162Bus
https://www.arxiv.org/abs/1806.0107.pdf
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Results

Points close to the security boundary (within distance γ)
IEEE 14-bus NESTA 162-bus

Brute Force 100% of points in 556.0 min intractable
Importance Sampling 100% of points in 37.0 min 901 points in 35.7 hours
Proposed Method 100% of points in 3.8 min 183’295 points in 37.1 hours

54

• Further benefits for the decision tree:

• Higher accuracy

• Better classification quality (Matthews correlation coefficient)

Generated Database for NESTA 162-bus system online available! 
https://github.com/johnnyDEDK/OPs_Nesta162Bus

https://github.com/johnnyDEDK/OPs_Nesta162Bus
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Conclusions 1/2
• Large-scale simulations on a ~7500 node European grid

– Controllable flows and a combined AC & DC upgrade are necessary to accommodate 
increased RES

– 2030: nodal price variance increases, multimodal distribution of prices, very-high-price 
pockets within one zone (e.g. France)

– Work in progress: how will the nodal prices get affected by the planned grid 
reinforcements?

• HVDC: offers the necessary power flow flexibility, but TSOs cannot recover the cost of losses
– Introduction of loss factors: for a guaranteed social welfare increase, loss factors for both 

AC and DC lines must be introduced
– Alternative: move to a nodal market with a (linearized) AC-OPF [some US ISOs already 

run similar algorithms)
– Work in progress: how can we have an “LMP” for HVDC flexibility?

55
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Conclusions 2/2
• Introduced a new Data-driven Security-Constrained OPF framework

– Tractable and scalable
– Can handle any security criteria
– Can handle uncertainty
– Can handle topology changes and controllable flows by HVDC
– Pass the data, not the line limits

• Currently working on (knowledge gaps)
– Locational Price for HVDC flexibility (and possible extensions to other topology changes)
– Evolution of nodal prices with RES penetration and grid reinforcements
– Scalable formulations to include security and uncertainty in OPF

56
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Thank you!
www.chatziva.com/publications

spchatz@elektro.dtu.dk
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How to model redispatching
• Different alternatives (cooptimization, running series of load flows, AC-OPF)

• Suggestion: run a linearized AC-OPF
– Objective function: minimize costs * (Predisp-Pinit)
– Linearize power flow equations around the selected operating point, determined 

by the zonal (day-ahead) market, and extract linear sensitivities
– Solve a convex optimization problem

– Several approaches available
– It has been shown that as long as we are focusing on a solution close to a selected 

operating point, linear approximations of AC power flow can offer an acceptable 
accuracy
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