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And many thanks to the European Research 
Council for funding this research
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Outline

1. Trustworthy AI for Power Systems

2. Physics Informed Neural Networks

3. Physics-Informed Graph Neural Networks for N-k Contingency Analysis

422 May 2025 Spyros Chatzivasileiadis – (Physics-Informed) Graph Neural Networks for Power Systems



DTU Wind

AI and Energy: 
two of the Sectors with the 

highest growth potential
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AI is already creating value in Energy Systems

• Load Forecasting

• Weather Forecasting

• Predictive Maintenance

• Energy Trading (forecasting 
of prices or quantities)
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But AI can do a lot more things

1. Process massive amounts 
of texts (e.g. regulations, 
manuals, procedures, etc)

2. Virtual assistant: Helping 
maintenance technicians 
with step-by-step 
instructions

3. Support for decision 
making 

And many more
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But: Would you ever trust AI to run your 
electricity network?

22 May 2025 Spyros Chatzivasileiadis – (Physics-Informed) Graph Neural Networks for Power Systems



DTU Wind

Machine Learning (ML) Barriers for Power systems

9

Input:

Operating point
secure/ 

insecure
black box

1. Why would we use a “black box” to decide about a 
safety-critical application? 

2. Neural Networks performance metric is “Accuracy”. 
Accuracy is a purely statistical performance metric. 
Who guarantees that the Neural Network can handle well 
previously unseen operating points?

3. Good AI Tools need good data. Why would we depend on 
discrete and incomplete data, when we have developed 
detailed physical models over the past 100 years?
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Machine Learning (ML) Barriers for Power systems

10

Input:

Operating point
secure/ 

insecure
black box

1. Why would we use a “black box” to decide about a 
safety-critical application? 

2. Neural Networks performance metric is “Accuracy”. 
Accuracy is a purely statistical performance metric. 
Who guarantees that the Neural Network can handle well 
previously unseen operating points?

3. Good AI Tools need good data. Why would we depend on 
discrete and incomplete data, when we have developed 
detailed physical models over the past 100 years?

Neural Network 
verification: 
guarantees for the NN 
performance!

Physics-Informed 
Neural Networks: 
potential to deliver tools 
that are 10x-100x-1000x 
faster!

Trustworthy AI 

22 May 2025 Spyros Chatzivasileiadis – (Physics-Informed) Graph Neural Networks for Power Systems



DTU Wind

Power Systems are Safety-Critical Systems 
We need Trustworthy AI 

When you design an AI method for power systems, think about: 

1. Interpretability, e.g. SHAP

2. Neural Network Verification

3. Physics Informed Neural Networks

4. Safe by Design, e.g. Safe Reinforcement Learning  you 
enforce constraints on the NN output so that it does not 
violate physical limits, e.g. generation limits, voltage limits, etc.

1122 May 2025 Spyros Chatzivasileiadis – (Physics-Informed) Graph Neural Networks for Power Systems

Examples:

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: 
Formal Guarantees for Power System Applications. In IEEE Transactions 
on Smart Grid, vol. 12, no. 1, pp. 383-397, Jan. 2021, 
https://arxiv.org/pdf/1910.01624.pdf

A. Venzke, G. Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: 
Worst-case Guarantees for Neural Networks.  Best Student Paper Award
at IEEE SmartGridComm 2020. https://arxiv.org/pdf/2006.11029.pdf

D. Tabas, B. Zhang, Computationally Efficient Safe Reinforcement 
Learning for Power Systems, American Control Conference, 2022, 
https://par.nsf.gov/servlets/purl/10355393

https://arxiv.org/pdf/1910.01624.pdf
https://arxiv.org/pdf/2006.11029.pdf
https://par.nsf.gov/servlets/purl/10355393


DTU Wind

Physics-Informed Neural 
Networks for Power Systems
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Physics-Informed Neural Networks (PINNs)

13

• Why can Neural Networks be faster than 
conventional simulation tools?
– Conventional tools need to run iterative methods to 

approximate the solution of differential equations

– For Neural Networks, it is a matrix multiplication (as long 
as they are accurate enough)

• What is the benefit of PINNs over standard NNs?
– PINNs do not need large amounts of training data. They 

learn from the physical models included in training.

– No need to spend (a lot of) time on generating data or 
depend on incomplete data

10x-100x-1’000x faster solution, 
depending on the application

Seem to be achieving significant speedups 
for partial differential equations                   

(e.g. computational fluid dynamics)
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Conven-
tional
simulation

PINN

Simulations for Wind Farms: 
Estimating the Region of Attraction of a Wind 
Farm Controller

• Collaboration with Ørsted
– Estimating the region of attraction of controllers is 

an important part of the wind farm design process

• Goal: Determine the best set of controller 
parameters (controller tuning)

• Training PINNs with GPUs 
– collaboration with NVIDIA

R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, I. Murzakhanov, S. Chatzivasileiadis,  
Physics–Informed Neural Networks for Phase Locked Loop Transient Stability 
Assessment [ https://arxiv.org/abs/2303.12116 ]
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5 million points with PINN

Simulations for Wind Farms: 
Estimating the Region of Attraction of a Wind 
Farm Controller

• Evaluation of 5 million points

R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, I. Murzakhanov, S. Chatzivasileiadis,  
Physics–Informed Neural Networks for Phase Locked Loop Transient Stability 
Assessment [ https://arxiv.org/abs/2303.12116 ]

25x – 100x faster

• EMT: ~2 days @ DTU HPC
• PINNs: 90 minutes for 

training and 30 minutes 
for evaluation
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• Added benefit: once trained, 
PINN can run on a laptop
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Physics-Informed Neural Networks for Power Systems: 
Vision 
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1. PINNSim: A modular power system time-
domain simulator  

– A library of component models implemented 
with Neural Networks

– “Drag’n’drop” to create your system

2. Integrate/interface PINNSim with 
conventional power system simulation 
tools

• A completely new way of simulation which can 
be 10x-100x faster.

– What does this mean? Instead of assessing 
100 scenarios leading to a blackout within 1 
hour, I can now assess 10,000 scenarios

Very first version of PINNSim simulation engine:

J. Stiasny, B. Zhang, S. Chatzivasileiadis, PINNSim: A Simulator for Power System 
Dynamics based on Physics-Informed Neural Networks, PSCC 2024. 
https://arxiv.org/abs/2303.10256

First effort to integrate PINNs with conventional simulation solvers: 

I. Ventura-Nadal, J. Stiasny, S. Chatzivasileiadis, Integrating Physics-Informed Neural 
Networks into Power System Dynamic Simulations, https://arxiv.org/pdf/2404.13325
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(Physics-Informed) Graph Neural 
Networks for Fast N-k Contingency 
Assessment
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Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis 
of Power Systems, 2025. Online https://arxiv.org/abs/2310.04213

https://arxiv.org/abs/2310.04213
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Agnes Nakiganda

Postdoc

Imperial College (formerly with DTU)

Agnes Nakiganda, Spyros Chatzivasileiadis, 
Graph Neural Networks for Fast Contingency 
Analysis of Power Systems, 2025. Online 
https://arxiv.org/abs/2310.04213
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What is the goal? 

• Train a Graph Neural Network to estimate voltages and line flows of N-k contingencies

• Training only on base topology (N-0) and all N-1 cases

• Estimate line flows and voltages for all N-2 cases and N-3 cases

– No N-2 and N-3 cases were used for training

– N-2 and N-3 were used only for testing

• Why GNN? Because it captures topology
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Why? 

• 118-bus  >700’000 N-3 
contingencies for a single 
generation and demand scenario

• Assume 19 generators with a high 
and low generation scenario

• Assume a high and a low demand 
profile (all loads vary uniformly)

• Total: 1,000,000 scenarios x 
700,000 contingencies we 
need to assess over 700 billion 
scenarios…!
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What will we talk about? 

• 2 Different Graph-Aware Neural Networks

– Guided Droupout 

– Edge-Varying Graph Neural Network 

• With and without a Physics-Informed Loss Term and 
equations

– The first to define and investigate a Physics-
Informed Guided Dropout Neural Network

– Among the first  to work with Physics-Informed 
Graph Neural Networks

21

1. Investigate the performance of 4 different Graph-
Aware Neural Networks

1. Guided Dropout without Physics-Informed

2. Guided Dropout with Physics-Informed

3. Edge-Varying Graph Neural Network without 
Physics-Informed

4. Edge-Varying Graph Neural Network with 
Physics Informed

2. Compare their performance with DC Power Flow 
which is considered a standard tool to assess fast 
N-k contingencies

3. Assess their performance in terms of time
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Guided-Dropout Neural Network

22

Base Case  N-0

Conditional 
Neurons are 
out

 

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Guided-Dropout Neural Network
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Base Case  N-0

Conditional 
Neurons are 
out

 

N-1; Line 2 out

Conditional 
Neuron 2 is in

 

N-1; Line 1 out

Conditional 
Neuron 1 is in

 

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Guided-Dropout Neural Network
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Base Case  N-0

Conditional 
Neurons are 
out

 

N-1; Line 2 out

Conditional 
Neuron 2 is in

 

N-1; Line 1 out

Conditional 
Neuron 1 is in

 

N-2; Lines 1 and 
2 are out

Conditional 
Neurons 1 and 2 
are  in

 

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Guided-Dropout Neural Network
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Base Case  N-0

Conditional 
Neurons are 
out

 

N-1; Line 2 out

Conditional 
Neuron 2 is in

 

N-1; Line 1 out

Conditional 
Neuron 1 is in

 

N-2; Lines 1 and 
2 are out

Conditional 
Neurons 1 and 2 
are  in

 

We train for this

We test for this

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Graph Neural Networks
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Ref: Isufi, E., Gama, F., and Ribeiro, A.: EdgeNets: Edge 
varying graph neural networks, IEEE T. Pattern AnalysisΦ(0)𝒙𝒙 + Φ(1)Φ(0)𝒙𝒙 + Φ(2)Φ(1)Φ(0)𝒙𝒙 + ⋯

Φ(1)Φ(0)𝒙𝒙 Φ(2)Φ(1)Φ(0)𝒙𝒙Φ(0)𝒙𝒙

• Φ(𝑘𝑘) encodes the NN weights based on the graph adjacency matrix  Neurons are connected 
based on the topology of the network 

Φ(0)𝒙𝒙

As we increase the hops, we widen the neighborhood that influences a specific node
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Physics Informed Graph-Aware Neural Networks
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PI-GDNN
Physics-Informed Guided Dropout

PI-EVGNN
Physics-Informed Graph Neural Network
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Physics-Informed NNs do not always perform better

28

Guided Dropout Graph Neural Networks
PINNs vs non-PINNs

• Physics-Informed Graph Neural 
Networks perform better than 
non-Physics-Informed

• Non-Physics-Informed Guided 
Dropout perform better than 
Physics-Informed Guided Dropout

• For the rest of our comparisons, 
we limit ourselves to 2 models: 

– GDNN

– PI-EVGNN
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GNNs for Regression: Estimating the line flows

29

N-1
Guided Dropout Graph Neural Networks
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GNNs for Regression: Estimating the line flows

30

N-1 N-2 N-3
Guided Dropout Graph Neural Networks Guided Dropout Graph Neural Networks Guided Dropout Graph Neural Networks

• Estimating the bus voltages had in general a better performance from the line flows

More info here: Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis of Power Systems, 2025. 
Online https://arxiv.org/abs/2310.04213

No training on N-2 and N-3, only testing!
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GNNs vs DC Power Flow: Estimating Line Overloadings

31

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

N-1
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GNNs vs DC Power Flow: Estimating Line Overloadings

32

N-1 N-3

• DC Power Flow 
performs the 
worst: cannot 
estimate any line 
congestion

• Both Guided 
Dropout and 
Graph NN perform 
better, but not 
much better

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

No training on N-2 
and N-3, only testing!
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N-1 N-3

• DC Power Flow 
performs the 
worst: cannot 
estimate any line 
congestion

• Both Guided 
Dropout and 
Graph NN perform 
better, but not 
much better

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

No training on N-2 
and N-3, only testing!
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What would you do to improve the NN performance?

• We need better databases! 

• And better methods to generate these databases fast and with information-rich content!

• Some first efforts from our side:
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F. Thams, A. Venzke, R. Eriksson, S. Chatzivasileiadis. Efficient Database Generation for Data-Driven Security 

Assessment of Power Systems. IEEE Transactions on Power Systems, vol 35, no. 1, pp. 30-41, Jan. 2020

[ .pdf | Databases | IEEEXplore]

Bastien Giraud, Lola Charles, Agnes Marjorie Nakiganda, Johanna Vorwerk, Spyros Chatzivasileiadis, A 
Dataset Generation Toolbox for Dynamic Security Assessment: On the Role of the Security 
Boundary, IREP 2025, https://arxiv.org/abs/2501.09513 

Open-source toolbox!

https://arxiv.org/pdf/1806.01074.pdf
http://www.chatziva.com/downloads.html#databases
https://ieeexplore.ieee.org/document/8600355
https://arxiv.org/abs/2501.09513
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Which method you think is the fastest ?
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Evaluation time

36

DC Power Flow vs
AC Power Flow vs
Guided Droupout vs 
Physics-Informed Graph Neural Network

• Logarithmic Axis!

Neural Networks     
100-400 times faster 
than AC  and DC 
Power Flow

• NNs need 1.5 minutes to assess 
100,000 scenarios

• AC/DC Power Flow need 5 hours 
to assess 100,000 scenarios
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What happens if we include the training time? 
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Computation Time including NN training

38

• Logarithmic Axis!! Bar length 
not proportional to time

• For the larger systems, it 
appears that the break-even 
point is at approx. 500,000 
scenarios

– For more than 500,000 
scenarios the NNs are 
faster

• Considering that we talked 
about 700 billion scenarios 
(118-bus, N-3 cases), then 
NNs appear very promising 
for screening 

10x 
faster
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Conclusions
• Power systems need Trustworthy AI! 

• Graph-Aware Neural Networks are a promising option to screen a vast number of N-k 
contingences (hundreds of millions) 

– Can capture topology changes

– Can be 100x-400x faster in their evaluation (1.5 minutes instead of 5 hours for 100,000 
scenarios)

– Much better performance than DC Power Flow

• Including training time, the break-even point with conventional methods appears to be at over 
500,000 scenarios (57-bus, 118-bus)

– Considering that a moderate assessment of N-3 contingencies in the 118-bus system might 
require 700 billion scenarios, the break-even point is low

• But: The screening performance still needs to be improved. A lot of R&D potential in: 

– Efficient and information-rich database generation for NN training

– Improved NN training, e.g. design of input and output vectors, NN structures

– Inclusion of Physics-informed terms or not
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Thank you!
Spyros Chatzivasileiadis

Professor

www.chatziva.com

spchatz@dtu.dk
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