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Today’s plan

1. Why Machine Learning?

2. The importance of high-quality data

3. Power systems are physical systems  Physics-Informed Neural Networks

4. Verify AI: worst-case guarantees for Neural Networks

Bonus! (according to time left and what you like us to talk about!)
i. Play with a PINN! 

• Google Colab Notebook to experiment with

ii. Integrate worst-case violations in NN training

iii. Graph Neural Networks
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DTU Department of Wind 
and Energy Systems
Working for a sustainable future
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DTU Wind and Energy Systems
at a Glance452

employees

#1
in wind publication 
citations worldwide

110
PhD students

280
industry partners

70%
funding that involves 

industry
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This work would not have been possible without the 
hard work of several people! Many thanks to…
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And many thanks to the European Research 
Council for funding this research
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AI and Energy: 
two of the Sectors with the 

highest growth potential
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Machine learning: Why shall we apply it 
in power systems?
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Machine learning: Why shall we apply it in power systems? 

1. ML methods can handle well 
extremely complex systems

2. ML methods can infer from 
incomplete data

3. ML methods can be extremely 
fast

1. Real-life power systems  are described 
by thousands of variables, parameters, 
and differential-algebraic equations

2. It is computationally impossible 
(intractable) to check for all possible 
operating conditions

3. Build proxies (=surrogate models)  get 
an estimate 100-1’000 times faster than 
conventional models; assess 100-1’000 
more scenarios in the same time

Machine Learning Power Systems
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ML Barriers for Power systems

1. Why would we use a “black box” to decide about a safety-
critical application? 

2. Accuracy is a purely statistical performance metric. Who 
guarantees that the Neural Network can handle well previously 
unseen operating points?

3. Why would we depend on discrete and incomplete data, when 
we have developed detailed physical models over the past 100 
years?

BUT:
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Takeaway #1

Solid motivation is key: If you wish to apply machine 
learning (including deep learning) methods on any 
problem, develop solid arguments why this is the only or 
the best way to do it
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Machine learning: WHEN shall we apply 
it in power systems?

(i.e. what are the use cases?)
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Machine learning: When shall we apply it in power 
systems? (my view)
1. When there is no other option, e.g. forecasting

• Load Forecasting has been the first real application for AI in power systems. Now 
also used for wind and olar forecasting, price forecasting, predictive maintenance, 
and others.

• Very complex: No physics-based model can capture the interdependency 
between all variables 

2. When computation speed is important: ML can be 100x-1000x faster 

• Power system security: assess  1’000 critical scenarios in the same time 
conventional methods assess only 1

• (“real-time”)  Energy markets: assess very fast possible options and determine 
best bidding strategy

• Added benefit: once trained, ML methods can run on a laptop (no need to 
continuously using High-Performance Computing every time we want to assess 
some additional scenarios)

ML Proxies
Extremely fast, 
and hopefully 

accurate
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ML Barriers for Power systems

1. Why would we use a “black box” to decide about a safety-
critical application? 

2. Accuracy is a purely statistical performance metric. Who 
guarantees that the Neural Network can handle well previously 
unseen operating points?

3. Why would we depend on discrete and incomplete data, when 
we have developed detailed physical models over the past 100 
years?

”Garbage in” “Garbage out”black box High Quality Training 
Data

Neural Network 
Performance 
Guarantees
 Remove dependence 
on the test database

Physics-Informed 
Neural Networks

 Prior knowledge!

7 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 14



DTU Wind

Goals of this lecture

1. The importance of high-quality data

2. Sampling beyond statistics

3. Physics-Informed Neural Networks

4. Neural network verification

5. If time permits (appendix): 

• Graph Neural Networks for N-k 
Contingency Assessment Article without any equations 

S. Chatzivasileiadis, A. Venzke, J. Stiasny and G. Misyris, 
"Machine Learning in Power Systems: Is It Time to Trust It?," 
in IEEE Power and Energy Magazine, vol. 20, no. 3, pp. 32-41, 

May-June 2022 [ .pdf ]
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Machine learning applications
(for power system security assessment)
A very short overview
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The ingredients

17

• Data #1: A training database

• A training algorithm

• Data #2: A test database
– To test accuracy of the approach
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Test Database
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Test Database

19

Traditionally: 

– Split training database to e.g. 80% training 
samples and 20% test samples

– Train with the 80% 

– Test with the 20%

Modern toolboxes have this integrated and 
automatized only need to provide a 
training database

Point to remember:

The test database determines the 
performance of your method. If the test 
data come from the same simulations 
as your training data, the accuracy can 
be deceivingly high. Would it be equally 
high in reality? 

Ideally  use a different real-life 
dataset

(Unfortunately, not always possible)
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Takeaway #2

The quality of your test database is crucial: the test 
database determines the performance of your method; 
for a valid assessment, it needs to include a wide range of 
operating conditions with the same frequency of 
occurrence as in real-life
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Evaluating the performance of a 
neural network
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• Accuracy: The proportion of correct 
classifications in the whole dataset

22

Accuracy = 
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Evaluating performance by measuring only 
accuracy is often not enough

Why?

Accuracy = ?

• Example: Assume 1000 datapoints
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(TP)

False positive
(FP)

Predicted
Unsafe

False negative
(FN)

True Negative
(TN)

Performance Metrics: Accuracy

Actually safe: 500 Actually unsafe: 500

TP=480 FP=30

FN=20 TN=470
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• Accuracy: The proportion of correct 
classifications in the whole dataset
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Accuracy = 
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Evaluating performance by measuring only 
accuracy is often not enough

Why?

Accuracy = 
480+470

480+20+470+30
= 95%

• Example: Assume 1000 datapoints
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• Accuracy: The proportion of correct 
classifications in the whole dataset
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Accuracy = 
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
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Evaluating performance by measuring only 
accuracy is often not enough

Why?

Accuracy = 
480+470

480+20+470+30
= 95%

• Example: Assume 1000 datapoints
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• Accuracy: The proportion of correct 
classifications in the whole dataset
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Accuracy = 
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
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Evaluating performance by measuring only 
accuracy is often not enough

Why?

Accuracy = 
480+470

480+20+470+30
= 95%

• Example: Assume 1000 datapoints
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Actually Safe Actually Unsafe

Predicted
safe

True positive 
(TP)

False positive
(FP)

Predicted
Unsafe

False negative
(FN)

True Negative
(TN)

Performance Metrics: Accuracy

Actually safe: 500 Actually unsafe: 500

TP=480 FP=30

FN=20 TN=470

Actually safe: 20 Actually unsafe: 980

TP=1 FP=30

FN=19 TN=950

Accuracy = 
1+950

1+19+950+30
= 95%

• 95% accurate but we have misclassified 
almost all truly safe points!

• For heavily unbalanced data, accuracy is 
not sufficient!
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Performance metrics:
If you train a classifier, make sure you not only assess its 
performance based on accuracy

• Accuracy

• Recall: True Positive Rate  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

• Specificity: True Negative Rate 
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁+𝐹𝐹𝐹𝐹

• Precision: Positive Predictive Value 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
• F1: harmonic mean of Precision and Recall F1 =

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

• MCC (Matthews correlation coefficient)

(only for binary classification – 2 classes only)

– MCC=1 perfect prediction

– MCC=0  random (like flipping a coin)

– MCC= –1Completely mistaken

26

Hidalgo-Arteaga, Hancharou, Thams, 
Chatzivasileiadis, Powertech 2019

MCC =
𝑇𝑇𝑇𝑇 � 𝑇𝑇𝑇𝑇 − (𝐹𝐹𝑃𝑃 � 𝐹𝐹𝑁𝑁)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
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Key hints for your implementation

• Regularization: Training of neural networks work better if you normalize 
your inputs

– Try to normalize your active power setpoints (e.g. if PG1 =30 MW and 
PG1max = 100 MW, then PG1=0.3)

• 1-hot encoding: Neural networks work better if you use one vector for 
each class

27

NN has 1 output neuron

Operating 
point

Safe=1
Unsafe=0

𝑥𝑥1 0

𝑥𝑥2 1

𝑥𝑥3 0

NN has 2 output neurons

Operating 
point Safe Unsafe

𝑥𝑥1 0 1

𝑥𝑥2 1 0

𝑥𝑥3 0 1

Instead of:
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Takeaway #3:
Neural networks (or Decision Trees) for classification:
you need a balanced training database similar 
number of safe and unsafe points

Takeaway #4:
Accuracy is not sufficient to assess the NN/DT 
performance. We need additional metrics

Takeaway #5:
Neural Network training requires additional “tricks” to 
boost its performance (e.g. 1-hot encoding/regularization)

7 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 28
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Training database
Sampling Beyond Statistics
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Dynamic Security Assessment: On the Role of the Security Boundary, Sustainable Energy, Grids, and 
Networks, Elsevier, 2025, https://arxiv.org/pdf/2501.09513

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ”Efficient database generation for data-driven 
security assessment of power systems”. ”.  IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, Jan. 2020. 
https://www.arxiv.org/abs/1806.0107.pdf 
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We need data!

1. Historical data are often insufficient

2. We often need to generate our own data to test the 
performance of our ML algorithm before deployment 
(“emulate”)

3. Need to generate simulation data

Here: generate data for power system security assessment
• Assessing the stability of 100’000s of operating points is an extremely 

demanding task

– Immense search space

– How can I do it efficiently?
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Sampling beyond Statistics:
Efficient Database Generation Toolbox

• Modular and highly efficient algorithm

• Can accommodate numerous definitions of power 
system security (e.g. N-1, N-k, small-signal stability, 
voltage stability, transient stability, or a combination
of them)

• 10-50 times faster than existing state-of-the-art 
approaches

• Our use case: N-1 security + small-signal stability
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Conventional 
Database 
Generation

32

Non-convex 
stable region

1. Statistical sampling 
across the input space

2. Often results to highly 
unbalanced database

• the stable/safe region is 
often1%-2% of the total 
region

Alternative: use our prior 
knowledge
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• The goal
– Focus on the boundary between 

stability and instability

– We call it: “high information content” 
region

• How?
1. Using convex relaxations

2. And “Directed Walks” 

33

Unstable regions

Stable region High information 
content

Real data for the IEEE 14-bus system
N-1 security and small-signal stability

Sampling beyond Statistics:
Efficient Database Generation
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Convex relaxations 
to discard 
infeasible regions

34

Non-convex 
stable region
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Convex relaxations 
to discard 
infeasible regions

35

Non-convex 
stable region

• Certificate: if point infeasible for 
semidefinite relaxation  infeasible 
for the original problem

convex 
relaxation
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Convex relaxations 
to discard 
infeasible regions

36

Non-convex 
stable region

• Certificate: if point infeasible for 
semidefinite relaxation  infeasible 
for the original problem

• If infeasible point: find minimum 
radius to feasibility

convex 
relaxation
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Convex relaxations 
to discard 
infeasible regions

37

Non-convex 
stable region

• Certificate: if point infeasible for 
semidefinite relaxation  infeasible 
for the original problem

• If infeasible point: find minimum 
radius to feasibility

• Discard all points inside the 
(hyper)sphere

convex 
relaxation
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• 3D projection of hyperspheres 

• IEEE 14-bus system

• Rapidly discarding (=classifying) large 
chunks of the search space as infeasible to 
focus on the boundary

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, ”Efficient database generation for data-
driven security assessment of power systems ”.  IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, 
Jan. 2020.. https://www.arxiv.org/abs/1806.0107.pdf 
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Convex relaxations 
to discard 
infeasible regions

39

Non-convex 
stable region

convex 
relaxation

• Extension of this work to 
hyperplanes

• A. Venzke, D.K. Molzahn, S. 
Chatzivasileiadis, Efficient 
Creation of Datasets for Data-
Driven Power System 
Applications. PSCC 2020. 
https://arxiv.org/pdf/1910.01794.
pdf
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• “Directed walks”: steepest-descent based 
algorithm to explore the remaining search 
space, focusing on the area around the 
security boundary

1. Variable step-size

2. Parallel computation

3. Full N-1 contingency check

Directed Walks
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Results

Points close to the security boundary (within distance γ)

IEEE 14-bus NESTA 162-bus

Brute Force 100% of points in 556.0 min intractable

Importance Sampling 100% of points in 37.0 min 901 points in 35.7 hours

Proposed Method 100% of points in 3.8 min 183’295 points in 37.1 hours
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Revisited in 2025: We compared 3 approaches

1. Latin Hypercube Sampling  (LHC) = 
uniform sampling across the input 
domain

2. Importance Sampling

3. (Our) Proposed Method

For 39-bus and 162-bus systems
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Dynamic Security Assessment: On the Role of the Security Boundary, Sustainable Energy, Grids, and 
Networks, Elsevier, 2025, https://arxiv.org/pdf/2501.09513

• Open-SourceToolbox: 
https://github.com/bastiengiraud/DSA-learn

Implemented in Julia using Powermodels.jl, 
PowerSystems.jl and PowerSimulationsDynamics.jl

https://arxiv.org/pdf/2501.09513
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Share of OPs in HIC region

• All methods can produce balanced 
datasets

• Our proposed method has a much 
higher share of OPs in the HIC region

HIC = High Information Content

OP = Operating Point
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Distribution of OPs
162-bus system

• Proposed algorithm drastically 
reduces the search space:

• LHC vs Proposed: over 2’500x 
input space reduction

• Security boundary not fully defined 
with all algorithms  shows how 
complex the task is

HIC = High Information Content

OP = Operating Point
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Computation Time
HIC = High Information Content

OP = Operating Point

• Proposed method more than                                
50x faster than                                   
naive sampling approach                                                                 
to sample 1k OPs in the HIC region. 

~50x faster

~74x faster

Question: how important is this  
high share of OPs in the HIC region?
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We trained Decision Trees
• We trained a Decision Tree (DT) with each dataset and tested it on all 3. 

• And we also tested the DT on test dataset which collected samples right around the HIC region 
(boundary)

Dataset we tested for

F1-score for the 39-bus system

F1-score: Harmonic mean of Precision and Recall 

F1 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 � 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Recall: True Positive Rate  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Precision: Positive Predictive Value 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Dataset we 
trained with
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We trained Decision Trees
• We trained a Decision Tree (DT) with each dataset and tested it on all 3. 

• And we also tested the DT on test dataset which collected samples right around the HIC region 
(boundary)

Dataset we tested for

F1-score for the 39-bus system

F1-score: Harmonic mean of Precision and Recall 

F1 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 � 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Recall: True Positive Rate  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Precision: Positive Predictive Value 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Dataset we 
trained with

• Each DT performs best 
on the test dataset it 
was trained for
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We trained Decision Trees
• We trained a Decision Tree (DT) with each dataset and tested it on all 3. 

• And we also tested the DT on test dataset which collected samples right around the HIC region 
(boundary)

Dataset we tested for

F1-score for the 39-bus system

F1-score: Harmonic mean of Precision and Recall 

F1 =
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 � 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Recall: True Positive Rate  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Precision: Positive Predictive Value 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Dataset we 
trained with

• Each DT performs best 
on the test dataset it 
was trained for

• On the boundary, our 
proposed method 
outperforms the rest

• Overall, our proposed 
method has the best 
overall performance
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A Balanced Dataset significantly improves the 
classifier performance

• 162-bus

• Trained only with our 
proposed method

• Sampled a balanced 
and an unbalanced 
training dataset

• Tested on all test datasets
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Takeaway #6

Creating high-quality training databases is extremely 
complex and an open research topic. We need to go 
beyond purely statistical methods and exploit the 
underlying physics during sampling.
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(Repeat) Takeaway #3:
Neural networks (or Decision Trees) for classification: you need a 
balanced training database similar number of safe and unsafe 
points
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Physics-Informed Neural Networks 
for Power System Dynamics
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What is the challenge?

• Assume we operate the Australian Grid and need 
to eliminate the blackout risk for the next day. 

• We need simulations to assess the risk and devise 
mitigation strategies. 

• Simulating 20 seconds of the dynamic behavior of 
the Australian Grid requires 12 minutes with a 
current state-of-the-art tool. 

• In a system of hundreds of nodes, there are 
1,000s of potential contingencies, and 100s of 
operating points that appear in a day. 

• Suppose we check just the 100 most critical 
disturbances for 5 hopefully representative 
operating points. This requires non-stop 
simulations for 4 days. 

25 Απριλίου 2025 Σπύρος Χατζηβασιλειάδης - Εμπιστεύσιμη Τεχνητή Νοημοσύνη στα Ηλεκτρικά Δίκτυα 52

• Performing such a task every day is 
impossible. 

• Our goal bring this time down from 4 days to 
1 hour (100x speedup)



DTU Wind

Physics-Informed Neural Networks (PINNs)

53

• Why can Neural Networks be faster than 
conventional simulation tools?
– Conventional tools need to run iterative methods to 

approximate the solution of differential equations

– For Neural Networks, it is a forward matrix 
multiplication (as long as they are accurate enough)

• What is the benefit of PINNs over standard NNs?
– PINNs do not need large amounts of training data. They 

learn from the physical models included in training.

– No need to spend (a lot of) time on generating data or 
depend on incomplete data

10x-100x-1’000x faster solution, 
depending on the application

Seem to be achieving significant speedups 
for partial differential equations                   

(e.g. computational fluid dynamics)
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min
𝑤𝑤1,𝑤𝑤2

𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖

s.t.
�𝑦𝑦𝑖𝑖 = 𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖 ∀𝑖𝑖

54

𝑥𝑥

𝑦𝑦 �𝑦𝑦𝑖𝑖 = 𝑤𝑤1 + 𝑤𝑤2𝑥𝑥𝑖𝑖

𝑦𝑦𝑖𝑖: actual/correct value

�𝑦𝑦𝑖𝑖: estimated value

Loss function: Estimate best 𝑤𝑤1, 𝑤𝑤2
to fit the training data

Traditional training of neural networks 
required no information about the 

underlying physical model. Just data!

Neural Networks: An advanced 
form of non-linear regression
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Physics Informed Neural Networks

• Automatic differentiation: derivatives of the neural network output with 
respect to the input can be computed during the training procedure

• A differential-algebraic model of a physical system can be included in the 
neural network training*

• Neural networks can now exploit knowledge of the actual physical system

• Machine learning platforms (e.g. Pytorch, Tensorflow) enable these 
capabilities

55

*M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-Informed neural networks: A deep learning framework for solving forward and 
inverse problems involving nonlinear partial differential equations", Journal of Computational Physics, vol.378, pp. 686-707, 2019
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Physics-Informed Neural Networks for Power Systems

56

“Original”     
Loss function

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural 
Networks for Power Systems. Presented at the Best Paper Session 
of IEEE PES GM 2020.  https://arxiv.org/pdf/1911.03737.pdf
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Physics-Informed Neural Networks for Power Systems

“Original”     
Loss function

Swing equation

“Physics-Informed” 
term

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural 
Networks for Power Systems. Presented at the Best Paper Session 
of IEEE PES GM 2020.  https://arxiv.org/pdf/1911.03737.pdf
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Physics-Informed Neural Networks for Power 
Systems

Code is available on GitHub: https://github.com/jbesty

G. S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. Presented at the 
Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf

• Physics-Informed Neural Networks (PINN) could 
potentially replace solvers for systems of 
differential-algebraic equations in the long-term

– Probable power system application: 
Extremely fast screening of critical 
contingencies

• In our example: PINN 87 times faster than ODE 
solver

• Can directly estimate the rotor angle at any time 
instant
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Computation time: 
Classical numerical solvers vs. Physics-Informed NNs

• Physics-Informed Neural Networks 
can determine the outputs on average 
100x faster than classical numerical 
solvers

– The further ahead we look in time, 
the larger the computational 
advantage is

59

J. Stiasny, S. Chatzivasileiadis, Physics-Informed Neural Networks for Time-
Domain Simulations: Accuracy, Computational Cost, and Flexibility 
https://arxiv.org/abs/2303.08994 [ code ] 

Classical 
solvers 
(e.g. Runge-Kutta)

PINNs

0.01s 0.1s 1s 10s

Computational Advantage  20x – 1’000x

Results from 11-bus and 39-bus
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But, there is a trade-off. The further we look ahead in 
time, the more difficult the learning task becomes

Learning takes longer

PINN accuracy drops

What shall we do? 
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How can we reduce training time and improve 
performance? 
1. Train for a shorter time period but for a 

wide range of initial conditions

2. Use the PINN in a recurrent fashion

61

PINN
t=t0 t=t0+2s

2 seconds
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How can we reduce training time and improve 
performance? 
1. Train for a shorter time period but for a 

wide range of initial conditions

2. Use the PINN in a recurrent fashion

62

PINN
t=t0 t=t0+2s

2 seconds

30 May 20247 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 
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Electro-
magnetic 
Transient 
(EMT) 
Simulation

PINN

Simulations for Wind Farms: 
Estimating the Region of Attraction of a Wind 
Farm Controller

• Collaboration with Ørsted
– Estimating the region of attraction of controllers is 

an important part of the wind farm design process

– Need for Electromagnetic Transient 
Simulations

• Goal: Determine the best set of controller 
parameters (controller tuning)

• Training PINNs with GPUs 
– collaboration with NVIDIA
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R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, I. Murzakhanov, S. Chatzivasileiadis,  
Physics–Informed Neural Networks for Phase Locked Loop Transient Stability 
Assessment, PSCC 2024 [ https://arxiv.org/abs/2303.12116 ]
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5 million points with PINN

• Evaluation of 5 million points

R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, I. Murzakhanov, S. Chatzivasileiadis,  
Physics–Informed Neural Networks for Phase Locked Loop Transient Stability 
Assessment, PSCC 2024 [ https://arxiv.org/abs/2303.12116 ]

25x – 100x faster

• EMT: ~2 days @ DTU HPC
• PINNs: 90 minutes for 

training and 30 minutes 
for evaluation
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• Added benefit: once trained, 
PINN can run on a laptop

Simulations for Wind Farms: 
Estimating the Region of Attraction of a Wind 
Farm Controller
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So, what can we do with PINNs?

1. Integrate them in existing simulators and accelerate them
1. How? Replace the components that slow down the simulation with PINNs.

2. What are the components that slow down a simulation? 

• The ones with the fastest time constants.

• Why? If a component changes fast  I need shorter time steps to capture 
how it changes  i need more time steps to complete a simulation

2. Create a PINN-based Simulator  PINNSim
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Most conventional solvers use the Trapezoidal Rule

• Implicit numerical method

• Backbone of most power system dynamic simulators

(PSCAD, EMTP, PowerFactory, and more)

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−△𝑡𝑡 +
△ 𝑡𝑡

2
𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 + 𝑓𝑓 𝑥𝑥𝑡𝑡−△𝑡𝑡,𝑦𝑦𝑡𝑡−△𝑡𝑡

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑥𝑥 = 𝑓𝑓 𝑥𝑥, �𝑉𝑉, ̅𝐼𝐼,𝑢𝑢 , 𝑥𝑥 𝑡𝑡0 = 𝑥𝑥0
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Trapezoidal Rule: Quiz

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−△𝑡𝑡 +
△ 𝑡𝑡

2
𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 + 𝑓𝑓 𝑥𝑥𝑡𝑡−△𝑡𝑡,𝑦𝑦𝑡𝑡−△𝑡𝑡

When was the trapezoidal rule first used in history?
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Trapezoidal Rule: Quiz

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−△𝑡𝑡 +
△ 𝑡𝑡

2
𝑓𝑓 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 + 𝑓𝑓 𝑥𝑥𝑡𝑡−△𝑡𝑡,𝑦𝑦𝑡𝑡−△𝑡𝑡

When was the trapezoidal rule first used in history?

50 BCE, Babylon
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How can they integrate into simulations?

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−Δ𝑡𝑡 +
Δ𝑡𝑡
2

𝑓𝑓 𝑥𝑥𝑡𝑡, ̅𝐼𝐼𝑡𝑡 + 𝑓𝑓 𝑥𝑥𝑡𝑡−Δ𝑡𝑡, ̅𝐼𝐼𝑡𝑡−Δ𝑡𝑡 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−Δ𝑡𝑡 + Δ𝑡𝑡 PINN(𝑥𝑥𝑡𝑡−Δ𝑡𝑡, 𝐼𝐼𝑡𝑡−Δ𝑡𝑡, 𝐼𝐼𝑡𝑡 ,∆𝑡𝑡)

Conventional/Commercial method PINN Integration
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How can they integrate into simulations?

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−Δ𝑡𝑡 +
Δ𝑡𝑡
2

𝑓𝑓 𝑥𝑥𝑡𝑡, ̅𝐼𝐼𝑡𝑡 + 𝑓𝑓 𝑥𝑥𝑡𝑡−Δ𝑡𝑡, ̅𝐼𝐼𝑡𝑡−Δ𝑡𝑡 𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−Δ𝑡𝑡 + Δ𝑡𝑡 PINN(𝑥𝑥𝑡𝑡−Δ𝑡𝑡, 𝐼𝐼𝑡𝑡−Δ𝑡𝑡, 𝐼𝐼𝑡𝑡 ,∆𝑡𝑡)

Conventional/Commercial method PINN Integration

𝑥𝑥𝑡𝑡 is in both sides of the equation  need iterations to solve it 𝑥𝑥𝑡𝑡 only on the left side  single-step
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Plug-and-Play Integration of PINNS
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Replacing 1 component with a PINN 
in dynamic simulations

• 9-Bus System (Machines in buses 1, 2, and 3 )

• 14-Bus System (Machines in buses 1, 2 , 3, 6, and 8)

• 30-Bus System (Machines in buses 1, 2 , 5, 8, 11, and 13)

PINN

2nd order 
model

2nd order 
model

2nd order 
model

# marks the machine replaced with a PINN
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System
𝝎𝝎 𝑰𝑰𝒅𝒅−𝒒𝒒

𝜔𝜔𝑎𝑎𝑎𝑎𝑎𝑎 𝜔𝜔∗ 𝐼𝐼𝑑𝑑−𝑞𝑞
𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼𝑑𝑑−𝑞𝑞∗

IEEE 9 9.5% 39.9% 17.9% 40.3%

IEEE 14 0.7% 40.5% 8.2% 40.8%

IEEE 30 1.8% 45.6% 8.7% 51.6%

• Including 1 PINN improves the accuracy 
of the fast component by up to 50%

• Improves overall accuracy on average 
1%-18%

More accurate simulations enable larger time steps

Integrating PINNs to dynamic simulations

I. Ventura-Nadal, R. Nelikkath, S. Chatzivasileiadis, Physics-Informed 
Neural Networks in Power System Dynamics: Improving Simulation 
Accuracy, IEEE Powertech 2025, https://arxiv.org/pdf/2501.17621

I. Ventura-Nadal, J. Stiasny, S. Chatzivasileiadis, Integrating Physics-
Informed Neural Networks into Power System Dynamic Simulations, 
Electric Power Systems Research, 2025, https://arxiv.org/pdf/2404.13325

https://arxiv.org/pdf/2501.17621
https://arxiv.org/pdf/2404.13325


DTU Wind

IEEE 30-Bus System Simulation

• Traditional:
– 6 conventionally 

modelled 
synchronous 
machines

• Hybrid:
– 1 PINN

– 5 conventionally 
modelled 
synchronous 
machines
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Do you want to create your own PINNs?

Components:
• ODE definition & parameter configuration

• Dataset generation (trajectories + 
collocation)

• Preprocessing & sampling controls

• PINN training loop (PyTorch, Hydra, Wandb)

• Evaluation & visualization
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Open-source Modular Python 
Toolbox!

GitHub/radiakos/PowerPINN

I. Karampinis, P. Ellinas, I. Ventura-Nadal, R. Nellikkath, S. Chatzivasileiadis, A 
Toolbox for Physics-Informed Neural Networks in Power Systems, IEEE 
Powertech 2025, https://arxiv.org/pdf/2502.06412

https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://arxiv.org/pdf/2502.06412
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Results – PINNs trained from the toolbox

1 trajectory 50 trajectories 500 trajectories
ODE solver 10.81ms 54.06ms 540.61ms
PINN 1.95ms (x5.5) 3.82ms (x14) 8.59ms (x63)

Key point: PINN scales massively better due to GPU parallelization

Synchronous 
machine   

with 9 states
SM
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If we want to create a PINN-based simulator….

Are PINNs scalable? 

Can we have a single PINN for 1,000 buses? 
Learning takes longer

PINN accuracy drops

Short answer: probably not

What shall we do? 
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Physics-Informed Neural Networks for Power Systems: 
Vision (Part I)

78

1. PINNSim: A modular power system 
time-domain simulator  

– A library of component models implemented 
with Neural Networks

– “Drag’n’drop” to create your system

• A completely new way of simulation which 
can be 10x-100x faster.
– What does this mean? Instead of assessing 

100 scenarios leading to a blackout within 1 
hour, I can now assess 10,000 scenarios

Very first version of PINNSim simulation engine:

J. Stiasny, B. Zhang, S. Chatzivasileiadis, PINNSim: A Simulator for Power System 
Dynamics based on Physics-Informed Neural Networks, PSCC 2024. 
https://arxiv.org/abs/2303.10256
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Are PINNs Trustworthy? 

• They are as trustworthy as any reduced-order model
– Most reduced-order models come with no guarantees about worst-case 

violation errors

– But, reduced-order models come from first principles, so we have picked 
the equations that are relevant to us we have an intuition which dynamic 
phenomena we capture and which not

• Work on verifying PINNs
– If successful, for the first time we will have reduced-order dynamic models

– Major challenge: how do you verify (= optimize) through differential 
equations?  
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Physics-Informed Neural Networks for Power Systems: 
Vision (Part II)

80

2. Verify PINNs
– For the first time, deliver a worst-case 

guarantee of the PINN approximation

– Deliver ML Surrogate Models with 
approximation error guarantees

P. Ellinas, R. Nellikkath, J. Stiasny, S. Chatzivasileiadis, Correctness Verification of Neural 
Networks Approximating Differential Equations, https://arxiv.org/abs/2402.07621

F. Eiras, A. Bibi, R. Bunel, K. Dvijotham, P. Torr, M. P. Kumar, Efficient Error Certification for 
Physics-Informed Neural Networks, ICML 2024, https://arxiv.org/pdf/2305.10157
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Interested in a PhD or Postdoc on Trustworthy AI 
and PINNs for Power Systems?

• We have open postdoc positions!

• Send an email to spchatz@dtu.dk  
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Hands-on Tutorial:
Physics Informed Neural Networks for Power 
Systems

82

Rahul Nellikkath
Postdoc

Ignasi Ventura Nadal
PhD student

Indrajit Chaudhuri
Intern
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Tutorial code: 
Physics-Informed Neural Networks for Single 
Machine Infinite Bus

• Google Colab Python Notebook

https://colab.research.google.com/drive/1plxP
Zf-A4h-
sPsFwpmcDbPqClwAwp_g1?usp=sharing#scrol
lTo=irgglR1yzyIO
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Hands-on Tutorial:
Physics Informed Neural Networks for Power 
Systems

1. You need Google credentials. Otherwise, you need to see from the person sitting 
next to you

2. https://colab.research.google.com/drive/1plxPZf-A4h-
sPsFwpmcDbPqClwAwp_g1?usp=sharing#scrollTo=irgglR1yzyIO

3. File  Save a Copy in Drive (so that you can edit the notebook)

4. Run each snippet of code

5. A number of Tasks to perform at the end

• E.g. Change the PINN Test parameters in ”Testing the performance of the 
neural network”
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Questions

1. What is the activation function we use for the neural network?

2. How many layers and how many neurons? 

3. How many collocation points?

4. What is the time range of the dynamic phenomenon that we train for? 

5. How many inputs? How many outputs? 
• Which are those? 

6. How many epochs do we train for? 

7. How many initial conditions do we train for? 
• What is their range? 
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Trustworthy AI for 
Power Systems
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AI is already creating value in Energy Systems

• Load Forecasting

• Weather Forecasting

• Predictive Maintenance

• Energy Trading (forecasting 
of prices or quantities)
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AI is already creating value in Energy Systems

• Load Forecasting

• Weather Forecasting

• Predictive Maintenance

• Energy Trading (forecasting 
of prices or quantities)

88

• ANNSTLF: Probably the 
first tool based on 
Machine Learning in 
Power Systems

• Developed by EPRI 
(Electric Power Research 
Institute) in the US

• First deployed in 1992 in 
Texas. Deployed to 32 
utilities by 1997
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AI is already creating value in Energy Systems

• Load Forecasting

• Weather Forecasting

• Predictive Maintenance

• Energy Trading (forecasting 
of prices or quantities)

89

Google Graphcast: AI is already better than physical 
models for global weather forecasting
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AI is already creating value in Energy Systems

• Load Forecasting

• Weather Forecasting

• Predictive Maintenance

• Energy Trading (forecasting 
of prices or quantities)

90

• Combination of images 
with other sensor data to 
predict failures

• IEA: digitalization can 
help lower maintenance 
costs of electricity grids 
by 5% = 80 billion EUR
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AI is already creating value in Energy Systems

• Load Forecasting

• Weather Forecasting

• Predictive Maintenance

• Energy Trading (forecasting 
of prices or quantities)
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But AI can do a lot more things

1. Process massive amounts 
of texts (e.g. regulations, 
manuals, procedures, etc)

2. Virtual assistant: Helping 
maintenance technicians 
with step-by-step 
instructions

3. Support for decision 
making 

And many more
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But: Would you ever trust AI to run your 
electricity network?

7 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 



DTU Wind 94

But: Would you ever trust AI to run your 
electricity network?
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What would you do to make it 
trustworthy?
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Making AI Trustworthy: My View

Performance 
Guarantees

1. your AI tool will never 
violate the voltage 
constraints

2. Or, your AI tool will violate 
the voltage constraint by 
XX % in the worst-case
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Making AI Trustworthy: My View

Performance 
Guarantees

1. your AI tool will never 
violate the voltage 
constraints

2. Or, your AI tool will violate 
the voltage constraint by 
XX % in the worst-case
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Making AI Trustworthy: My View

Performance 
Guarantees

1. your AI tool will never 
violate the voltage 
constraints

2. Or, your AI tool will violate 
the voltage constraint by 
XX % in the worst-case
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A lot of recent developments for trustworthy AI

• April 2021: The EU is promoting rules for 
Trustworthy AI

• Visit of Ms. Margrethe Vestager at DTU

– EU Commissioner of Competition, 
Executive Vice President of "A Europe Fit 
for the Digital Age”

– In April 2021, Ms. Vestager proposed new 
rules and actions aiming to turn Europe 
into the global hub for trustworthy Artificial 
Intelligence
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A lot of recent developments for trustworthy AI

• World-leading optimization tool: Starting with Gurobi 10.0, Gurobi supports Neural Network 
verification since 2023
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A lot of recent developments for trustworthy AI

• Tailored MILP solvers for NN Verification

– Alpha-beta-crown is the winning algorithm

– Over 100x speedup

• Focus is mostly on Image Classification/ Image 
Recognition

– Key for medical applications such as recognition of 
MRI images, for self-driving car applications, and 
others

• There is an effort to submit models related to 
power systems, so that participants can test and 
develop verification algorithms with focus on 
power systems (we also tried to submit some power 
system models, but we did not manage to complete our 
effort)

100

https://sites.google.com/view/vnn2025 
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Accelerating Verification: α,β-CROWN for  DC-OPF

S. Chevalier, I. Murzakhanov, S. Chatzivasileiadis, GPU-
Accelerated Verification of Machine Learning Models for 
Power Systems, Best Paper Award at HICSS (Hawaii 
International Conferences on Systems  Sciences), Jan. 
2024 https://arxiv.org/pdf/2306.10617

101

• We formulated the power system 
verification problem in a way that can be 
solved by α,β-CROWN.

• α,β-CROWN now verifies for multiple line 
flow violations and not only one at a time

• α,β-CROWN much faster than Gurobi 10.0

α,β-CROWN 7x-300x faster than Gurobi
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A lot of recent developments for trustworthy AI

• Interpretable AI

• SHAP: Shapley Additive Explanations

• Sensitivity Factors that explain the output of a 
model

102

Y. Lu, I. Murzakhanov, S. Chatzivasileiadis, Neural network interpretability for 
forecasting of aggregated renewable generation. In IEEE SmartGridComm 
2021, Aachen, Germany, October 2021. [ .pdf | code ]

• Predicting the net production of PV+Load

• Positive  PV>load; Negative PV<load

https://shap.readthedocs.io/en/latest/ 
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Kolmogorov Arnold Networks
• Learnable activation functions (B-Splines)

H. Shuai, F. Li, Physics-Informed Kolmogorov-Arnold Networks for 
Power System Dynamics, https://arxiv.org/pdf/2408.06650 

P. Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S. 
Chatzivasileiadis, Physics-Informed Machine Learning for Power System Dynamics: 
A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and 
Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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Kolmogorov Arnold Networks
• Learnable activation functions (B-Splines)

H. Shuai, F. Li, Physics-Informed Kolmogorov-Arnold Networks for 
Power System Dynamics, https://arxiv.org/pdf/2408.06650 

P. Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S. 
Chatzivasileiadis, Physics-Informed Machine Learning for Power System Dynamics: 
A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and 
Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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Kolmogorov Arnold Networks
• KANs are potentially more interpretable than PINNs (less neurons, trained activation functions 

which can give some insights)

In our tests:

• KANs are more accurate than PINNs

• KANs are slower than PINNs

P. Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S. 
Chatzivasileiadis, Physics-Informed Machine Learning for Power System Dynamics: 
A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and 
Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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Preview: 
What are the main takeaways of this final part? 

1. Energy systems are safety-critical systems. When you develop AI (or OR) approaches think: 
can my method be trusted? What shall I do to guarantee a safe operation?

2. AI needs OR. 

• Major challenges: tractability for realistic size power system problems. There are a lot of 
cool tricks we can invent to scale these methods

3. Do not try to reinvent the wheel. Why should you train an RL agent assuming no prior 
knowledge, when you e.g. have a detailed model of the battery you want to control? Develop 
methods that combine the strengths of physics-based and data-driven methods.
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Neural Network Verification
for Power Systems

107

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications.
In IEEE Transactions on Smart Grid, vol. 12, no. 1, pp. 383-397, Jan. 2021, https://arxiv.org/pdf/1910.01624.pdf

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer 
programming,” in International Conference on Learning Representations (ICLR 2019), 2019
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Guiding Application:
Security Assessment with Neural Networks

108

Database of 
secure/insecure 
operating points

2. Train a neural network NN Output:

Binary classification: 
secure/insecure

Extremely fast: up to 
100x-1’000x faster

5. Use the NN

1. Split the database in a 
training set and a test set 3. Test the neural network 

Input:

Operating point

secure/ 
insecure

4. Is accuracy high enough?

Approaches proposed up to now
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Neural Network Verification: HOW?

1. Exact transformation: Convert the neural network to a set of linear equations with binary 
variables

• The Neural Network can be included in a mixed-integer linear optimization problem

2. Formulate an optimization problem  and solve it  certificate for NN behavior

3. Assess if the neural network output complies with the ground truth

1097 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 



DTU Wind

• Most usual activation function: ReLU

• ReLU: Rectifier Linear Unit

110

𝑤𝑤35

𝑤𝑤24

𝑢𝑢𝑖𝑖𝑖𝑖 𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜

𝑢𝑢5

𝑢𝑢4𝑢𝑢2

𝑢𝑢3

From Neural Networks to 
Mixed-Integer Linear Programming

Linear weightsNon-linear 
activation 
functions

input

output
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From Neural Networks to 
Mixed-Integer Linear Programming

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binary variables

If input<0 , set
binary =0  use

linear function #1
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From Neural Networks to 
Mixed-Integer Linear Programming

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binary variables

If input>0 , set
binary =1  use

linear function #2

If input<0 , set
binary =0  use

linear function #1
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From Neural Networks to 
Mixed-Integer Linear Programming

2. I can encode all operations of a Neural Network 
to a system of linear equations with continuous 
and binary variables

3. I can integrate all information encoded in a 
neural network inside an optimization 
program

input

output

1. But ReLU can be transformed to a piecewise 
linear function with binary variables

If binary =1, 

linear function #2

If binary =0, 

linear function #1
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Certify the output for a continuous range of inputs

114

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf

1. We assume a given input xref with 
classification “safe”
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Certify the output for a continuous range of inputs

115

1. We assume a given input xref with 
classification “safe”

2. Solve optimization problem: Does 
classification change for any input 
within distance ε from xref?

3. If not, then I can certify that my neural 
network will classify the whole 
continuous region as “safe”

4. I can repeat this for other regions and 
different classifications

A. Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power 
System Applications. IEEE Transactions on Smart Grid, Jan. 2021.  https://arxiv.org/pdf/1910.01624.pdf
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Provable Worst-case Guarantees

116

Venzke, G. Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees for Neural 
Networks.  Best Student Paper Award at IEEE SmartGridComm 2020. https://arxiv.org/pdf/2006.11029.pdf

R. Nellikkath, S. Chatzivasileiadis, Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC 
Optimal Power Flow. In IEEE SmartGridComm 2021, Aachen, Germany, October 2021.

R. Nellikkath, S. Chatzivasileiadis. Physics-Informed Neural Networks for AC Optimal Power Flow. 2021.

7 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 

https://arxiv.org/pdf/2006.11029.pdf


DTU Wind

Key Enabler: 
our ability to represent the underlying ground 
truth

Main idea:

• Take advantage of the ground truth representation we have, i.e. the power system models

• Measure the performance of the Neural Network against the ground truth

– Does the Neural Network violate constraints?

• Determine the worst-case performance = provable worst-case guarantees

– Across the continuous input domain

– No Sampling

– Instead, we solve an optimization program

– Once “certified”, we can use directly the Neural Network (no need to re-run the optimization 
program)
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Worst violation over the 
whole training dataset 

(training+test set)

118

Our algorithm: provable
worst-case guarantee over 

the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits
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Worst violation over the 
whole training dataset 

(training+test set)

119

Our algorithm: provable
worst-case guarantee over 

the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits

Over the whole input domain 
violations can be much larger 
(here ~7x) compared to what 
has been estimated empirically 
on the dataset
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Worst violation over the 
whole training dataset 

(training+test set)

120

New algorithm: provable
worst-case guarantee over 

the whole input domain

Maximum violation of 
generator limits

Maximum violation of 
line limits

We can now provide guarantees 
that no NN output will violate 
the line limits over the whole 
input domain
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Reducing the worst-case violations

121

No violation

Max violation

Training 
Dataset:

Load Domain 
[60%-100%]

δ=0.08

Use for a  
single point  
only

Train 

Use on a 
subdomain

Train and use on 
the same domain 

Train 
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What shall we do next? 

1. Integrate worst-case violations in NN training?

2. Graph-Neural Networks for N-k Security Assessment?

3. Play with a PINN?

• Google Colab Notebook

4. Conclude and Discuss?
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Integrating Worst-Case 
Violations in NN training
-- Begin

7 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 124



DTU Wind

Worst-case Violations: What is the next natural 
step?
Integrate the worst-case violations inside the neural network training procedure

Our ”Holy Grail”: Design a Neural Network training procedure that:

• produces a Neural Network with best average performance, 

• and delivers guarantees about its worst-case performance
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Worst-case Violations: What is the next natural 
step?
Integrate the worst-case violations inside the neural network training procedure

Our ”Holy Grail”: Design a Neural Network training procedure that:

• produces a Neural Network with best average performance, 

• and delivers guarantees about its worst-case performance

(Random) Example of an imaginary final message: 

• ”Neural Network Training finished. Accuracy 99.2%. Worst-case violation of critical 
constraints: 10%.” 

Wouldn’t that create a good level of trust for applying NNs on any safety-critical system?
Extends beyond power systems drones, air-traffic control, robots, control of inverters, 
and others
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How can we integrate worst-case violations in NN training?

• Standard NN training
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• Standard NN training

• NN training which penalizes constraint violations

– Reduces the violations for the training dataset

128

See Fioretto, Mak, Van Hentenryck, AAAI, 2020, 
and others

e.g. for generator 
constraint violations

How can we integrate worst-case violations in NN training?
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• Standard NN training

• NN training which penalizes constraint violations

– Reduces the violations for the training dataset

• NN training which penalizes worst-case violations

– Worst-case violations might be on datapoints that do 
not belong to the training dataset. And we might just 
discover it when we deploy the NN in a real application

• this is a major fear of any power system operator 
(and a main barrier for the NNs in safety-critical 
applications)

129

See Fioretto, Mak, Van Hentenryck, AAAI, 2020, 
and others

e.g. for generator 
constraint violations

Hard bilevel optimization problem

1. Lower level is a MILP

2. The MILP must be differentiable so that 
the NN training can backpropagate

How can we integrate worst-case violations in NN training?
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Some thoughts 
on how to design an NN training that minimizes worst-case violations

1. Fix the binaries 

• Arbitrary assumption (but it works): for small 
perturbations of weights & biases, binaries remain 
constant

• Solve the lower level MILP by itself, find the binary values 
for the max constraint violation and fix them

2. MILP is converted to an LP  it is now differentiable

3. Cast it as a differentiable optimization layer (we use CVXPY)     
NN training can now backpropagate through it

130

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of 
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf 
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1. Fix the binaries 

• Arbitrary assumption (but it works): for small 
perturbations of weights & biases, binaries remain 
constant

• Solve the lower level MILP by itself, find the binary values 
for the max constraint violation and fix them

2. MILP is converted to an LP  it is now differentiable

3. Cast it as a differentiable optimization layer (we use CVXPY)     
NN training can now backpropagate through it

4. Reduce complexity: reduce #weights and #biases to 
adjust w, b of last layer had the largest impact
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R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of 
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf 

Derivatives of weights and biases on each of 
the 4 layers w.r.t. worst-case violations

Some thoughts 
on how to design an NN training that minimizes worst-case violations
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Test Cases MAE (%) Worst-Case Guarantees
Max. Generation Violation 

w.r.t. Max. Loading

case39

NN 0.56% 0.67%

GenNN 0.55% 0.67%

WCNN 0.47% 0.00%

case57

NN 1.02% 0.65%

GenNN 1.01% 0.67%

WCNN 1.00% 0.29%

case118

NN 0.42% 204.60%

GenNN 0.42% 213.80%

WCNN 0.42% 109.83%

case162

NN 1.10% 184.30%

GenNN 1.06% 181.52%

WCNN 1.06% 142.35%

132

AC-OPF

NN: standard NN

GenNN: penalizing violations in the 
Loss Function

WCNN: our approach; penalizing 
worst-case violations

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of 
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf 
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Test Cases MAE (%) Worst-Case Guarantees
Max. Generation Violation 

w.r.t. Max. Loading

case39

NN 0.56% 0.67%

GenNN 0.55% 0.67%

WCNN 0.47% 0.00%

case57

NN 1.02% 0.65%

GenNN 1.01% 0.67%

WCNN 1.00% 0.29%

case118

NN 0.42% 204.60%

GenNN 0.42% 213.80%

WCNN 0.42% 109.83%

case162

NN 1.10% 184.30%

GenNN 1.06% 181.52%

WCNN 1.06% 142.35%
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NN: standard NN

GenNN: penalizing violations in the 
Loss Function

WCNN: our approach; penalizing 
worst-case violations

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of 
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf 

1. Good average performance 
and minimum worst-case 
violations are not 
necessarily competing 
objectives 

2. Surprising: WCNN not only 
eliminates all violations, but 
manages to find a lower 
minimum for the average 
performance as well
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Test Cases MAE (%) Worst-Case Guarantees
Max. Generation Violation 

w.r.t. Max. Loading

case39

NN 0.56% 0.67%

GenNN 0.55% 0.67%

WCNN 0.47% 0.00%

case57

NN 1.02% 0.65%

GenNN 1.01% 0.67%

WCNN 1.00% 0.29%

case118

NN 0.42% 204.60%

GenNN 0.42% 213.80%

WCNN 0.42% 109.83%

case162

NN 1.10% 184.30%

GenNN 1.06% 181.52%

WCNN 1.06% 142.35%
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NN: standard NN

GenNN: penalizing violations in the 
Loss Function

WCNN: our approach; penalizing 
worst-case violations

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of 
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf 

1. For larger systems, the 
worst-case violations are 
large

2. WCNN manages to reduce 
them by 50%

3. Reducing Worst-Case 
Violations does not affect 
average performance!

A lot more work is needed to 
improve scalability and 

performance!
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Thoughts on 
Minimizing Worst-Case Violations of Neural Networks

• What did I show?

1. Verify the output of a trained NN

2. Incorporate the ground truth in #1 determine worst-case violations of a trained NN

3. Incorporate #2 in NN training for the first time, create a NN training procedure that 
can determine and reduce the worst-case violations during training

135

Contributions 
from our group 
which can be 
used in the field 
of ML too

• Why does it work?

– Because we have a physical model of the process that our NN emulates

• What are the challenges?

– Computational performance  it takes too much time

– Scalability  how can we verify larger neural networks (or consider more 
complex ground truth representations)

– How can we always achieve zero MILP gap = obtain the performance guarantee?

• Solutions?  .....

One approach for scalability:

S. Chevalier, S. Chatzivasileiadis,
Global Performance Guarantees 
for Neural Network Models of AC 
Power Flow
https://arxiv.org/abs/2211.07125
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Integrating Worst-Case 
Violations in NN training
-- End
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(Physics-Informed) Graph Neural 
Networks for Fast N-k Security 
Assessment
--Begin
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Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis 
of Power Systems, 2025. Online https://arxiv.org/abs/2310.04213

https://arxiv.org/abs/2310.04213
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Agnes Nakiganda

Postdoc

Imperial College (formerly with DTU)

Agnes Nakiganda, Spyros Chatzivasileiadis, 
Graph Neural Networks for Fast Contingency 
Analysis of Power Systems, 2025. Online 
https://arxiv.org/abs/2310.04213
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What is the goal? 

• Train a Graph Neural Network to estimate voltages and line flows of N-k contingencies

• Use GNN as a fast screening tool!

• Training only on base topology (N-0) and all N-1 cases

• Estimate line flows and voltages for all N-2 cases and N-3 cases

– No N-2 and N-3 cases were used for training

– N-2 and N-3 were used only for testing

• Why GNN? Because it captures topology
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Why? 

• 118-bus  >700’000 N-3 
contingencies for a single 
generation and demand scenario

• Assume 19 generators with a high 
and low generation scenario

• Assume a high and a low demand 
profile (all loads vary uniformly)

• Total: 1,000,000 scenarios x 
700,000 contingencies we 
need to assess over 700 billion 
scenarios…!
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What will we talk about? 

• 2 Different Graph-Aware Neural Networks

– Guided Droupout 

– Edge-Varying Graph Neural Network 

• With and without a Physics-Informed Loss Term and 
equations

– The first to define and investigate a Physics-
Informed Guided Dropout Neural Network

– Among the first  to work with Physics-Informed 
Graph Neural Networks

141

1. Investigate the performance of 4 different Graph-
Aware Neural Networks

1. Guided Dropout without Physics-Informed

2. Guided Dropout with Physics-Informed

3. Edge-Varying Graph Neural Network without 
Physics-Informed

4. Edge-Varying Graph Neural Network with 
Physics Informed

2. Compare their performance with DC Power Flow 
which is considered a standard tool to assess fast 
N-k contingencies

3. Assess their performance in terms of time
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Guided-Dropout Neural Network

142

Base Case  N-0

Conditional 
Neurons are 
out

 

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Guided-Dropout Neural Network

143

Base Case  N-0

Conditional 
Neurons are 
out

 

N-1; Line 2 out

Conditional 
Neuron 2 is in

 

N-1; Line 1 out

Conditional 
Neuron 1 is in

 

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Guided-Dropout Neural Network

144

Base Case  N-0

Conditional 
Neurons are 
out

 

N-1; Line 2 out

Conditional 
Neuron 2 is in

 

N-1; Line 1 out

Conditional 
Neuron 1 is in

 

N-2; Lines 1 and 
2 are out

Conditional 
Neurons 1 and 2 
are  in

 

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Guided-Dropout Neural Network

145

Base Case  N-0

Conditional 
Neurons are 
out

 

N-1; Line 2 out

Conditional 
Neuron 2 is in

 

N-1; Line 1 out

Conditional 
Neuron 1 is in

 

N-2; Lines 1 and 
2 are out

Conditional 
Neurons 1 and 2 
are  in

 

We train for this

We test for this

Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici, 
“Fast power system security analysis with Guided dropout,” 2018
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Graph Neural Networks

146

Ref: Isufi, E., Gama, F., and Ribeiro, A.: EdgeNets: Edge 
varying graph neural networks, IEEE T. Pattern AnalysisΦ(0)𝒙𝒙 + Φ(1)Φ(0)𝒙𝒙 + Φ(2)Φ(1)Φ(0)𝒙𝒙 + ⋯

Φ(1)Φ(0)𝒙𝒙 Φ(2)Φ(1)Φ(0)𝒙𝒙Φ(0)𝒙𝒙

• Φ(𝑘𝑘) encodes the NN weights based on the graph adjacency matrix  Neurons are connected 
based on the topology of the network 

As we increase the hops, we widen the neighborhood that influences a specific node
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Physics Informed Graph-Aware Neural Networks

147

PI-GDNN
Physics-Informed Guided Dropout

PI-EVGNN
Physics-Informed Graph Neural Network
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Physics-Informed NNs do not always perform better

148

Guided Dropout Graph Neural Networks
PINNs vs non-PINNs

• Physics-Informed Graph Neural 
Networks perform better than 
non-Physics-Informed

• Non-Physics-Informed Guided 
Dropout perform better than 
Physics-Informed Guided Dropout

• For the rest of our comparisons, 
we limit ourselves to 2 models: 

– GDNN

– PI-EVGNN
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GNNs for Regression: Estimating the line flows

149

N-1
Guided Dropout Graph Neural Networks
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GNNs for Regression: Estimating the line flows

150

N-1 N-2 N-3
Guided Dropout Graph Neural Networks Guided Dropout Graph Neural Networks Guided Dropout Graph Neural Networks

• Estimating the bus voltages had in general a better performance from the line flows

More info here: Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis of Power Systems, 2025. 
Online https://arxiv.org/abs/2310.04213

No training on N-2 and N-3, only testing!
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GNNs vs DC Power Flow: Estimating Line Overloadings

151

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

N-1
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GNNs vs DC Power Flow: Estimating Line Overloadings

152

N-1 N-3

• DC Power Flow 
performs the 
worst: cannot 
estimate any line 
congestion

• Both Guided 
Dropout and 
Graph NN perform 
better, but not 
much better

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

No training on N-2 
and N-3, only testing!
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N-1 N-3

• DC Power Flow 
performs the 
worst: cannot 
estimate any line 
congestion

• Both Guided 
Dropout and 
Graph NN perform 
better, but not 
much better

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

No training on N-2 
and N-3, only testing!

7 August 2025 Spyros Chatzivasileiadis – Machine Learning for Power Systems: Is it time to trust it? 



DTU Wind

What would you do to improve the NN performance?

• We need better databases! 

• And better methods to generate these databases fast and with information-rich content!

• Some first efforts from our side:
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F. Thams, A. Venzke, R. Eriksson, S. Chatzivasileiadis. Efficient Database Generation for Data-Driven Security 

Assessment of Power Systems. IEEE Transactions on Power Systems, vol 35, no. 1, pp. 30-41, Jan. 2020

[ .pdf | Databases | IEEEXplore]

Bastien Giraud, Lola Charles, Agnes Marjorie Nakiganda, Johanna Vorwerk, Spyros Chatzivasileiadis, A 
Dataset Generation Toolbox for Dynamic Security Assessment: On the Role of the Security 
Boundary, IREP 2025, https://arxiv.org/abs/2501.09513 

Open-source toolbox!

https://arxiv.org/pdf/1806.01074.pdf
http://www.chatziva.com/downloads.html#databases
https://ieeexplore.ieee.org/document/8600355
https://arxiv.org/abs/2501.09513
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Which method you think is the fastest ?
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Evaluation time

156

DC Power Flow vs
AC Power Flow vs
Guided Droupout vs 
Physics-Informed Graph Neural Network

• Logarithmic Axis!

Neural Networks     
100-400 times faster 
than AC  and DC 
Power Flow

• NNs need 1.5 minutes to assess 
100,000 scenarios

• AC/DC Power Flow need 5 hours 
to assess 100,000 scenarios
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What happens if we include the training time? 
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Computation Time including NN training

158

• Logarithmic Axis!! Bar length 
not proportional to time

• For the larger systems, it 
appears that the break-even 
point is at approx. 500,000 
scenarios

– For more than 500,000 
scenarios the NNs are 
faster

• Considering that we talked 
about 700 billion scenarios 
(118-bus, N-3 cases), then 
NNs appear very promising 
for screening 

10x 
faster
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Conclusions
• Power systems need Trustworthy AI! 

• Graph-Aware Neural Networks are a promising option to screen a vast number of N-k 
contingences (hundreds of millions) 

– Can capture topology changes

– Can be 100x-400x faster in their evaluation (1.5 minutes instead of 5 hours for 100,000 
scenarios)

– Much better performance than DC Power Flow

• Including training time, the break-even point with conventional methods appears to be at over 
500,000 scenarios (57-bus, 118-bus)

– Considering that a moderate assessment of N-3 contingencies in the 118-bus system might 
require 700 billion scenarios, the break-even point is low

• But: The screening performance still needs to be improved. A lot of R&D potential in: 

– Efficient and information-rich database generation for NN training

– Improved NN training, e.g. design of input and output vectors, NN structures

– Inclusion of Physics-informed terms or not
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(Physics-Informed) Graph Neural 
Networks for Fast N-k Security 
Assessment
--End
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Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis 
of Power Systems, 2025. Online https://arxiv.org/abs/2310.04213

https://arxiv.org/abs/2310.04213
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Conclude and Discuss 
--Begin
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Classification of Verification Methods

Open-Source 
Trustworthiness Toolbox 

coming soon!

P. Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S. Chatzivasileiadis, Physics-Informed 
Machine Learning for Power System Dynamics: A Framework Incorporating Trustworthiness, Sustainable 
Energy, Grids and Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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Trustworthy AI for Power Systems: Vision

AI Testing and Experimentation Facility for Energy

• Establish a platform that verifies AI tools and certifies that they 
comply with power system safety specifications

AI Standards: Create Standards for AI tools in Energy

Design a Neural Network Training Algorithm that 
simultaneously delivers guarantees of the worst-case NN 
performance

• Example: ”Neural Network Training finished. Accuracy 99.2%. 
Worst-case violation of critical constraints: 10%.” 

163

AI-EFFECT EU project
Start: 1st October 2024

Participants: EPRI (Lead), DTU, TU Delft, Univ. Porto, BEOF, 
TenneT, ENEL, and others 

R.Nellikkath, S. Chatzivasileiadis, Minimizing 
worst-case violations for neural networks, 
https://arxiv.org/abs/2212.10930 
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Some Final Thoughts

• If we want to accelerate processes by 10x-100x-
1000x we need to think differently

– Conventional methods reach their limits (?)

– Could Machine Learning become the disruptive 
technology?

• AI Needs OR Neural Network Verification is an 
optimization problem. Can we address its 
challenges?

– If yes, we remove barriers for a wide range of 
safety-critical applications
• Power systems, robots, self-driving cars, control of 

critical infrastructure, and many others
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Some Final Thoughts

• If we want to accelerate processes by 10x-100x-
1000x we need to think differently

– Conventional methods reach their limits (?)

– Could Machine Learning become the disruptive 
technology?

• AI Needs OR Neural Network Verification is an 
optimization problem. Can we address its 
challenges?

– If yes, we remove barriers for a wide range of 
safety-critical applications
• Power systems, robots, self-driving cars, control of 

critical infrastructure, and many others
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• Can we model the ground truth? If yes, use it! 

– Physics-Informed Neural Networks (PINNs)

– Sampling Beyond Statistics

– Neural Network Training with Worst-Case 
Performance Guarantees

• PINNSim: A Simulator based on Physics Informed 
Neural Networks for Power System Dynamics

– Do not need a single NN for the whole problem

– Let’s work with ”Libraries of Neural Networks”, 
similar to ”Libraries of Models”

– A PINN-based simulator can be 10x-100x faster for 
power system dynamics
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Open-source Toolboxes

1. Generate your own training datasets!

GitHub/bastiengiraud/DSA-learn

2. Train your own Physics-Informed Neural Networks!

GitHub/radiakos/PowerPINN

3. Play with a PINN for Power System Dynamics!

Google Colab PINN Playground
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https://github.com/bastiengiraud/DSA-learn
https://github.com/bastiengiraud/DSA-learn
https://github.com/bastiengiraud/DSA-learn
https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://github.com/radiakos/PowerPINN
https://colab.research.google.com/drive/1plxPZf-A4h-sPsFwpmcDbPqClwAwp_g1?usp=sharing#scrollTo=irgglR1yzyIO
https://colab.research.google.com/drive/1plxPZf-A4h-sPsFwpmcDbPqClwAwp_g1?usp=sharing#scrollTo=irgglR1yzyIO
https://colab.research.google.com/drive/1plxPZf-A4h-sPsFwpmcDbPqClwAwp_g1?usp=sharing#scrollTo=irgglR1yzyIO
https://colab.research.google.com/drive/1plxPZf-A4h-sPsFwpmcDbPqClwAwp_g1?usp=sharing#scrollTo=irgglR1yzyIO
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Thank you!
Spyros Chatzivasileiadis

Professor

www.chatziva.com

spchatz@dtu.dk
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