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Today’s plan

i

1. Why Machine Learning?
2. Theimportance of high-quality data
3. Powersystems are physical systems = Physics-Informed Neural Networks

4. Verify Al: worst-case guarantees for Neural Networks

Bonus! (according to time left and what you like us to talk about!)
i.  PlaywithaPINN!
- Google Colab Notebook to experiment with
Ii. Integrate worst-case violations in NN training
lii. Graph Neural Networks
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DTU Wind and Energy Systems

at a Glance
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452

employees

110

PhD students
#H1

& in wind publication
8 citations worldwide

70%

.. ' funding that involves
industry
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This work would not have been possible without the
hard work of several people! Many thanks to...

W

ke

Andreas Rahul Sam Lejla Elea llgiz Petros Agnes Bastien Spyros
Venzke Nellikkath Chevalier Halilbasic Prat Murzakhanov Ellinas Nakiganda Giraud Chatzivasileiadis

And to our collaborators:

Pascal van Hentenryck, GeorgiaTech
Mathieu Tanneau, GeorgiaTech
Dan Molzahn, GeorgiaTech

Georgios Florian Jochen Brynjar Emilie Ignasi Indrajit Steven L.ow. Caltech
Misyris Thams Stiasny Seevarsson Jong Ventura Nadal Chaudhuri /
Guannan Qu, Caltech (now at CMU)

Baosen Zhang (Univ. Washington)
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And many thanks to the European Research
Council for funding this research

. _®
L]
+ 18 g0g800,

European Research Council

Established by the European Commission
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Aland Energy:
two of the Sectors with the
highest growth potential

I
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Machine learning: Why shall we apply it
In power systems?
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Machine learning: Why shall we apply it in power systems?

NE

Machine Learning Power Systems
1. ML methods can handle well 1. Real-life power systems are described
extremely complex systems by thousands of variables, parameters,

and differential-algebraic equations

2. ML methods caninfer from 2. Itiscomputationally impossible

Incomplete data (intractable) to check for all possible
operating conditions

3. MLmethods canbe extremely 3. Build proxies (=surrogate models) = get
fast an estimate 100-1"000 times faster than
conventional models; assess 100-1"000

more scenarios in the same time
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ML Barriers for Power systems

"Garbage in” black box » “Garbage out”

BUT:

1. Whywould we use a “black box” to decide about a safety-
critical application?

2. Accuracy is a purely statistical performance metric. Who
guarantees that the Neural Network can handle well previously
unseen operating points?

3.  Whywould we depend on discrete and incomplete data, when
we have developed detailed physical models over the past 100
years?

DTU Wind
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Takeaway #1

Solid motivationis key: If you wish to apply machine
learning (including deep learning) methods on any

problem, develop solid arguments why this is the only or
the bestwaytodoit
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Machine learning: WHEN shall we apply

It in power systems?
(i.e. what are the use cases?)




Machine learning: When shall we apply it in power oTU Wing
systems? (my view)

NE

1. When there is no other option, e.g. forecasting

- Load Forecasting has been the first real application for Al in power systems. Now
also used for wind and olar forecasting, price forecasting, predictive maintenance,
and others.

« Very complex: No physics-based model can capture the interdependency
between all variables

2. When computation speed is important: ML can be 100x-1000x faster

« Power system security: assess 1’000 critical scenarios in the same time
conventional methods assess only 1

« (“real-time”) Energy markets: assess very fast possible options and determine

best bidding strategy ML Proxies
« Added benefit: once trained, ML methods can run on a laptop (no need to Extremely fast,
continuously using High-Performance Computing every time we want to assess and hopefully
accurate

some additional scenarios)

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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ML Barriers for Power systems

"Garbage in” black box » “Garbage out”

Why would we use a “black box” to decide about a safety-

critical application? jl>

Accuracy is a purely statistical performance metric. Who
guarantees that the Neural Network can handle well previously
unseen operating points?

Why would we depend on discrete and incomplete data, when
we have developed detailed physical models over the past 100

years? >

DTU Wind

High Quality Training
Data

Neural Network
Performance
Guarantees

- Remove dependence
on the test database

Physics-Informed
Neural Networks

=> Prior knowledge!

7 August 2025
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Goals of this lecture

The importance of high-quality data
Sampling beyond statistics
Physics-Informed Neural Networks

Neural network verification

7 August 2025

o}

If time permits (appendix):

« Graph Neural Networks for N-k
Contingency Assessment

DTU Wind

Article without any equations ©
S. Chatzivasileiadis, A. Venzke, J. Stiasny and G. Misyris,

"MachineLearningin Power Systems: Is It Timeto Trust It?,"
in /EEE Power and Energy Magazine, vol. 20, no. 3, pp. 32-41,

May-June 2022 [ .pdf]

g for Power Systems: Is it time to trust it?


https://ieeexplore.ieee.org/document/9761145
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Machine learning applications
(for power system security assessment)

A very short overview
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Test Database
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Point to remember:

Traditionally: The test database determines the
— Split training database to e.g. 80% training performance of your method. If the test
samples and 20% test samples data come from the same simulations
— Train with the 80% as your training data, the accuracy can
. be deceivingly high. Would it be equally
— Test with the 20% hlgh in reality?

Modern toolboxes have this integrated and
automatized > only need to provide a Ideally = use a different real-life
training database dataset

(Unfortunately, not always possible)

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Takeaway #2

The quality of your test database is crucial: the test
database determines the performance of your method;
for avalid assessment, it needs to include a wide range of
operating conditions with the same frequency of
occurrence as in real-life

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Evaluating the performance of a
neural network




DTU

= Performance Metrics: Accuracy

« Accuracy: The proportion of correct
classifications in the whole dataset

TP+TN
TP+FP+TN+FN

Accuracy =

- Example: Assume 1000 datapoints

Actually safe: 500  Actually unsafe: 500
TP=480 FP=30
FN=20 TN=470

Accuracy="7

True positive False positive
(TP) FP
False negative True Negative
(FN) (TN)

Evaluating performance by measuring only
accuracy is often not enough

Why?

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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= Performance Metrics: Accuracy

« Accuracy: The proportion of correct
classifications in the whole dataset

TP+TN
TP+FP+TN+FN

Accuracy =

- Example: Assume 1000 datapoints
Actually safe: 500  Actually unsafe: 500

TP=480 FP=30
FN=20 TN=470
480+470
Accuracy = = 95%

480+20+470+30

True positive False positive
(TP) FP
False negative True Negative
(FN) (TN)

Evaluating performance by measuring only
accuracy is often not enough

Why?
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= Performance Metrics: Accuracy

« Accuracy: The proportion of correct
classifications in the whole dataset

TP+TN
TP+FP+TN+FN

Accuracy =

- Example: Assume 1000 datapoints
Actually safe: 500  Actually unsafe: 500

TP=480 FP=30
FN=20 TN=470
480+470
Accuracy = = 95%

480+20+470+30

True positive False positive
(TP) FP

False negative True Negative
(FN) (TN)

Evaluating performance by measuring only
accuracy is often not enough

Why?
Actuallysafe: 20  Actually unsafe: 980
TP=1 FP=30
FN=19 TN=950

Accuracy =7
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= Performance Metrics: Accuracy

« Accuracy: The proportion of correct
classifications in the whole dataset

TP+TN
TP+FP+TN+FN

Accuracy =

- Example: Assume 1000 datapoints
Actually safe: 500  Actually unsafe: 500

TP=480 FP=30
FN=20 TN=470

480+470

Accuracy = = 95%
480+20+470+30

True positive False positive
(TP) FP

False negative True Negative
(FN) (TN)

Evaluating performance by measuring only
accuracy is often not enough
Why?
Actuallysafe: 20  Actually unsafe: 980
TP=1 FP=30
FN=19 TN=950

1+950
= 95%
1+19+950+30

Accuracy =

« 95% accurate but we have misclassified
almost all truly safe points!

- For heavily unbalanced data, accuracy is
not sufficient!

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Performance metrics:

DTU Wind

If you train a classifier, make sure you not only assess its
performance based on accuracy

Accuracy

TP
TP+FN

Recall: True Positive Rate

TN
TN+FP

Specificity: True Negative Rate

TP
TP+FP

F1: harmonic mean of Precision and Recall F1 =
Precision -Recall

Precision: Positive Predictive Value

Precision+Recall

MCC (Matthews correlation coefficient)
(only for binary classification — 2 classes only)

— MCC=1 - perfect prediction
— MCC=0 - random (like flipping a coin)

—- MCC= -1 Completely mistaken MCC

Precision Specificity

/
(98.75,99.2) \,

’
4 Accuracy
(0.91,0.945) (97.8,98.6)

Hidalgo-Arteaga, Hancharou, Thams,
Chatzivasileiadis, Powertech 2019

~ (TP - TN) — (FP - FN)
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

7 August 2025 DTU Wind Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Key hints for your implementation

. Regularization: Training of neural networks work better if you normalize
your Inputs

—Try to normalize your active power setpoints (e.g. If PG1 =30 MW and
PGImax =100 MW, then PG1=0.3)

. 1-hot encoding: Neural networks work better if you use one vector for

each class
NN has 1 output neuron NN has 2 output neurons
Operating Safe=T Operating
point Unsafe=0 point Safe Unsafe
Instead of: % o » 0 :

xZ 1 xz 1 O
X3 O X3 @) 1

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Takeaway #3:

Neural networks (or Decision Trees) for classification:
you need a balanced training database - similar
number of safe and unsafe points

Takeaway #4.:

Accuracy is not sufficient to assess the NN/DT
performance. We need additional metrics

Takeaway #5:

Neural Network training requires additional “tricks” to
boost its performance (e.g. 1-hot encoding/regularization)
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Training database

Sampling Beyond Statistics

B. Giraud, L. Charles, A. M. Nakiganda, J. Vorwerk, S. Chatzivasileiadis, A Dataset Generation Toolbox for
Dynamic Security Assessment: On the Role of the Security Boundary, Sustainable Energy, Grids, and
Networks, Elsevier, 2025, https://arxiv.org/pdf/2501.09513

F. Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, "Efficient database generation for data-driven
security assessment of power systems”.”. IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, Jan. 2020.
https://www.arxiv.org/abs/1806.0107.pdf
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DTU
=  Weneeddata!
1. Historical data are often insufficient
2. We often need to generate our own data to test the
performance of our ML algorithm before deployment
(“emulate”)
3. Needtogenerate simulation data

Here: generate data for power system security assessment

« Assessing the stability of 100°000s of operating points is an extremely
demanding task

— Immense search space
- How can |l do it efficiently?

DTU Wind

1001051010
19 010101101001
00 001000010000100001
01010110100101011010010101101001010110104)
10111001111011100111101
u01100900000110000000
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Sampling beyond Statistics:
Efficient Database Generation Toolbox

i

- Modular and highly efficient algorithm

- Can accommodate numerous definitions of power
system security (e.g. N-1, N-k, small-signal stability,
voltage stability, transient stability, ora combination
of them)

. 10-50 times faster than existing state-of-the-art
approaches

 Our use case: N-1security + small-signal stability

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Non-convex
stable region

DTU Wind

Conventional
Database
Generation

1. Statistical sampling
across the input space

2. Oftenresults to highly
unbalanced database

. the stable/saferegionis
often1%-2% of the total
region

Alternative: use our prior
knowledge

7 August 2025
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Sampling beyond Statistics:
Efficient Database Generation

i

Unstable regions

- The goal

—Focus on the boundary between
stability and instability

—We call it: “high information content” o
region

135

135 |

P

— stable
€ unstable

145

150 -

- How?
1. Using convex relaxations

' High information
2. And “Directed Walks” Stable region g

content

Real data for the IEEE 14-bus system
N-1security and small-signal stability

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Non-convex
stable region

DTU Wind

Convexrelaxations
to discard
infeasible regions

7 August 2025
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convex
relaxation

Non-convex

stable region

DTU Wind

Convexrelaxations
to discard
infeasible regions

- Certificate: if point infeasible for
semidefinite relaxation = infeasible
for the original problem

7 August 2025
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convex
relaxation

Non-convex
stable region

DTU Wind

Convexrelaxations
to discard
infeasible regions

. Certificate: if point infeasible for
semidefinite relaxation = infeasible
for the original problem

- If infeasible point: find minimum
radius to feasibility

7 August 2025
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convex
relaxation

Non-convex
stable region

7 August 2025
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DTU Wind

Convexrelaxations
to discard
infeasible regions

- Certificate: if point infeasible for
semidefinite relaxation = infeasible
for the original problem

- If infeasible point: find minimum
radius to feasibility

 Discard all points inside the
(hyper)sphere
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- 3D projection of hyperspheres
- |[EEE 14-bus system
0.2
3 0154 - Rapidly discarding (=classifying) large
B e o chunks of the search space as infeasible to
Lt - focus on the boundary
L
0.6 i
0.5

0.3 TT—

0.2 S /C:,/ 05, ]
0.1 o, Gen3 '
Paenz [P-U] o 06

F.Thams, A.Venzke, R. Eriksson, and S. Chatzivasileiadis, “Efficient database generation for data-
driven security assessment of power systems”. IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41,
Jan. 2020.. https://www.arxiv.org/abs/1806.0107.pdf
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Convex relaxations
" todiscard
infeasible regions
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convex
relaxation

« Extension of thisworkto
hyperplanes

Non-convex
stable region

« A.Venzke, D.K. Molzahn, S.
Chatzivasileiadis, Efficient

: Creation of Datasets for Data-
Driven Power System
Applications. PSCC 2020.
https://arxiv.org/pdf/1910.01794.

pdf
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Directed Walks

 “Directed walks”: steepest-descent based
algorithm to explore the remaining search |
space, focusing on the area around the OPs with
security boundary Y = (min

1. Variable step-size

PgenQ

2. Parallel computation
3. Full N-1contingency check

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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Results

_ Points close to the security boundary (within distance y)

Brute Force 100% of points in 556.0 min  /ntractable
Importance Sampling 100% of pointsin37.0min 901 points in 35.7 hours
Proposed Method 100% of pointsin 3.8 min 183’295 pointsin 37.1 hours

F.Thams, A. Venzke, R. Eriksson, and S. Chatzivasileiadis, "Efficient database generation for data-driven
security assessment of power systems”.”. IEEE Trans. Power Systems, vol. 35, no. 1, pp. 30-41, Jan.2020.
https://www.arxiv.org/abs/1806.0107.pdf
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Revisited in 2025: We compared 3 approaches

1. Latin Hypercube Sampling (LHC) = « Open-SourceToolbox:
uniform sampling across the input https://github.com/bastiengiraud/DSA-learn
domain

2. Importance Sampling

3. (Our) Proposed Method

For 39-bus and 162-bus S\/stems Implemented in Julia using Powermodels.jl,
PowerSystems.jl and PowerSimulationsDynamics.|l

B. Giraud, L. Charles, A. M. Nakiganda, J. Vorwerk, S. Chatzivasileiadis, A Dataset Generation Toolbox for
Dynamic Security Assessment: On the Role of the Security Boundary, Sustainable Energy, Grids, and
Networks, Elsevier, 2025, https://arxiv.org/pdf/2501.09513
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HIC = High Information Content
OP = Operating Point

Share of OPs in HIC region

i

B LHC BB Importance l D Proposed Method

100

39-bus system -
80

60

* Allmethods can produce balanced
datasets

40
26

20

Share of OPs in %

0 LI * Our proposed method hasamuch
100 higher share of OPs in the HIC region

162-bus system
R0 79 (

60

45

40 37

20

Share of OPs in %

13
.l
[

secure OPs HIC region
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HIC = High Information Content
OP = Operating Point

Distribution of OPs

162-bus system

i

LHC

® HIC * Proposed algorithm drastically
SiaE reduces the search space:

* LHC vs Proposed: over 2'500x
INput space reduction

PGI12 [p.u.]

Importance

10 (g‘: :-:’ R . " dee

i i e  Security boundary not fully defined
Proposed Method Proposed Method Wlth a” a|g0rlth ms 9 ShOWS hOW

10 complex the task s

- 3
st

PG12 [p.u.]
6]

PGI12 [p.u/]
(6] ]

3 #‘?

KRl

0 10 20 0 10 20
PG10 [p.u.] PG10 [p.u.]
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DTU HIC = Hi i
. . = High Information Content
o
= Computation Time OP = Operating Point
TABLE III
COMPUTATIONAL COST COMPARISON FOR THE 39-BUS SYSTEM.
Method Time / 1k HIC OPs * Proposed method more than
LHC 9.9 h 50x faster than
Importance o4h ~50x faster naive sampling approach
Proposed Method 02h . .
to sample 1k OPs in the HIC region.
TABLE IV
COMPUTATIONAL COST COMPARISON FOR THE 162-BUS SYSTEM.
Method Time / 1k HIC OPs
LHC 369 h
Importance 8.0 h ~74x faster
Proposed Method 05h

Question: how important is this
high share of OPs in the HIC region?

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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We trained Decision Trees

i

* Wetrained a Decision Tree (DT) with each dataset and tested it on all 3.

* Andwealso tested the DT on test dataset which collected samples right around the HIC region
(boundary)

F1-score for the 39-bus system

F1-score:Harmonic mean of Precision and Recall Recall: True Positive Rate

. TP+FN
Precision - Recall

F1 =
Precision + Recall Precision:Positive Predictive Value

TP+FP

7 August 2025 DTU Wind Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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We trained Decision Trees

i

* Wetrained a Decision Tree (DT) with each dataset and tested it on all 3.

* Andwealso tested the DT on test dataset which collected samples right around the HIC region
(boundary)

 Each DT performs best
on the test dataset it
Dataset we tested for was trained fOF

F1-score for the 39-bus system

Testing LHC Importance Pﬁ) P Eszd
Training etho

Datasetwe LHC 0.98 0.62 0.78
trained with Importance 0.95 0.92 0.67

Proposed Method ~ 0.95 0.91 10.92]
F1-score:Harmonic mean of Precision and Recall Recall: True Positive Rate TPY:I-PFN

_ Precision - Recall

~ Precision + Recall Precision:Positive Predictive Value ——

TP+FP

Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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DTU
“ [ J [ J [ ]
= Wetrained Decision Trees
* Wetrained a Decision Tree (DT) with each dataset and tested it on all 3.
* Andwealso tested the DT on test dataset which collected samples right around the HIC region
(boundary)
- o the39-h X  Each DT performs best
-scoretTorine -DUS system .
y on the test dataset it
Dataset we tested f .
. arasetweteste Or:mpose ; was trained for
eSHNE  LHC Importance Boundar
Training P Method ’
Datasetwe  LHC 0.98 0.62 0.78 0.67 * Ontheboundary, our
trainedwith 1 rtance 0.95 0.92 0.67 0.64 proposed method
* Overall, our proposed
F1-score:Harmonic mean of Precision and Recall Recall- True Positive Rate TpT+PFN methOd haS the beSt
. Precision - Recall II rf
~ Precision + Recall Precision:Positive Predictive Value —— overa pe ormance

TP+FP
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A Balanced Dataset significantly improves the

DTU Wind

classifier performance

162-bus

Trained only with our
proposed method

 Sampled abalanced
and an unbalanced
training dataset

Tested on all test datasets

TABLE V
162-BUS SYSTEM F1-SCORES WITH AN UNBALANCED AND A BALANCED
DATASET FOR THE PROPOSED METHOD.

Testing LHC Importance P;f b ﬁs{zid Boundary
Training etho

Unbalanced 0.90 0.69 0.64 0.59
Balanced 0.97 0.87 0.88 0.85
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(Repeat) Takeaway #3:

Neural networks (or Decision Trees) for classification: you need a
balanced training database - similar number of safe and unsafe
points

Takeaway #6

Creating high-quality training databases is extremely
complex and an open research topic. We need to go
beyond purely statisticalmethods and exploit the
underlying physics during sampling.
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Physics-Informed Neural Networks
for Power System Dynamics
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What is the challenge?

« Assume we operate the Australian Grid and need 7
to eliminate the blackout risk for the next day. v

e

« We need simulations to assess therisk and devise
mitigation strategies.

; )
s
T { i
- Simulating 20 seconds of the dynamic behavior of }?M . ?}
the Australian Grid requires 12 minutes with a
current state-of-the-art tool. :
i

« Inasystem of hundreds of nodes, there are
1,000s of potential contingencies, and 100s of

operating points that appear in a day. . Performing such a task every day is
, ) Impossible.
« Suppose we check just the 100 most critical
disturbances for 5 hopefully representative . Our goal bring this time down from 4 days to
operating points. This requires non-stop 1hour (100x speedup)

simulations for 4 days.

25 AmrpiAiou 2025 Zmipog Xatr¢nBaaciAeiddng - Eumoteloiun Texvnti Nonuoouvn ota HAekTpikd AikTua
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Physics-Informed Neural Networks (PINNs)

\

« Why can Neural Networks be faster than

conventional simulation tools? > 10x-100x-1"000x faster solution,

— Conventional tools need to run iterative methods to depending on the application
approximate the solution of differential equations

— For Neural Networks, it is a forward matrix

multiplication (as long as they are accurate enough) Seem to be achieving significant speedups
for partial differential equations

(e.g. computational fluid dynamics)

« Whatis the benefit of PINNs over standard NNs?

— PINNs do not need large amounts of training data. They
learn from the physical models included in training.

- No need to spend (a lot of) time on generatingdataor __“/
depend onincomplete data

7 August 2025 Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?



DTU Wind

=
—
—

Neural Networks: An advanced

form of non-linear regression y;: actual/correct value
y;: estimated value

i

Loss function: Estimate best wy, w,
to fit the training data

min  |ly; — ¥l

W11W2
S.t.
yi = Wq + szi Yi

v

Traditional training of neural networks
required no information about the
underlying physical model. Just data!
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DTU Wind

Physics Informed Neural Networks

- Automatic differentiation: derivatives of the neural network output with
respect to the input can be computed during the training procedure

- A differential-algebraic model of a physical system can be included in the
neural network training*

- Neural networks can now exploit knowledge of the actual physical system

- Machine learning platforms (e.g. Pytorch, Tensorflow) enable these
capabillities

*M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-Informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations", Journal of Computational Physics, vol.378, pp. 686-707,2019

7 August 2025
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= Physics-Informed Neural Networks for Power Systems
“Original”
Loss function Exact - - - Predicted
P = 0.1? [p.u.]' .P = l].l.S [p.u.]'
min 1 Z 0 — 8|+ 1 Z F(0)) ”
Wb 1% i€EN N i€Ny d|
(6a) 0.5
st. 0=NN(t. P, W.b) (6h) " |
. 05 . 05 0 5 10 15 20
o = T 0 = e (6¢) -
£(5) = Mb+ Do + Asind — P, (6d) 0.2
0f -
-0.2

0 5 10 15 20
Time [s] Time [s]

G.S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural

Networks for Power Systems. Presented at the Best Paper Session

of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf
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DTU
o °
= Physics-Informed Neural Networks for Power Systems
“Original” “Physics-Informed”
Loss function term Exact — -~ Predicted
\ / P=0.17 [p.u.] P =0.18 [p.u.]
1 A - e | | ** =<1 |
Wb [N, EXA: 0=, g\;f 700 (|
(6a) 0.5
st. 0=NN(t. P, W.b) (6h) " |
. 88 5 0 5 10 15 20
f(0) = Md+ Db+ Asind — P, | (6d)
/ —
Swing equation

Time [s] Time [s]
G.S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural
Networks for Power Systems. Presented at the Best Paper Session
of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf
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Physics-Informed Neural Networks for Power oTU Wind
Systems

Exact — - —-Predicted
P =0.17 [p.u.] P =0.18 [p.u.]
y g ’ 1 15F . ‘ 3

« Physics-Informed Neural Networks (PINN) could
potentially replace solvers for systems of
differential-algebraic equations in the long-term

- Probable power system application:

l -

. op o 05¢
Extremely fast screening of critical
. . 0 n

_ 0.4 0.4
- In our example: PINN 87 times faster than ODE g, .
solver E -

3 0F 0t =
. . . -0.2 -0.2
- Candirectly estimate therotor angle atany time 0 5 10 15 2 o0 5 10 15 20
Time [s] Time [s]

Instant

Codeis available on GitHub: https://github.com/jbesty

G.S. Misyris, A. Venzke, S. Chatzivasileiadis, Physics-Informed Neural Networks for Power Systems. Presented at the
Best Paper Session of IEEE PES GM 2020. https://arxiv.org/pdf/1911.03737.pdf
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1 Computation time: orU Wi
Classical numerical solvers vs. Physics-Informed NNs

)

i

10—1—22—00 O O O OOOAO <><>\

o Classical
s o solvers
o - .
021e o o © 8 8 0 oo % (eg Runge-Kutta) , physics-Informed Neural Networks
+ (0] / .
¥ o (o)
18 38 . oo e — o © can determine the outputs on average

100x faster than classical numerical

1077 Ed Computational Advantage 20x - 1'000x solvers

— The further ahead we look in time,

l the larger the computational
@ ? <;> <;> ? <:> <? ? 4 <:> ? } PINNs advantageis
——rd s 42 = A;

Run-time [s]

-+ 12 2
La & ‘ e ——
0.01s O.1s 1s 10s
Prediction time ¢ [s]
Results from 11-bus and 39-bus J. Stiasny, S. Chatzivasileiadis, Physics-Informed Neural Networks for Time-

Domain Simulations: Accuracy, Computational Cost, and Flexibility
https://arxiv.org/abs/2303.08994 [ code ]
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But, there is a trade-off. The further we look ahead in
time, the more difficult the learning task becomes

Learning takes longer
PINN accuracy drops

What shall we do?
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¥ How can we reduce training time and improve
“~  performance? P =0.17 [p.u.]
1.5 ' '
1. Trainfor ashortertime period but for a
wide range of initial conditions = 1
2. UsethePINNinarecurrentfashion £
=05
2 seconds
0 i
0 3 10 15 20
0.4
t=t, t=ty+2s % 0.2
A > T-:!. U
-0.2 : :
0 5’ 10 15 20

Time [s]
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How can we reduce training time and improve
performance? __P=0.17[pu]

W

1. Trainfor ashortertime period but for a
wide range of initial conditions

2. UsethePINN inarecurrentfashion

2 seconds
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DTU ROA with time from ODE for a = 0.1 DTU Wind
oo o [ ] [ ]
== = 2 Simulations for Wind Farms:
£ : : : : :
o5 2 Estimating the Region of Attraction of a Wind
» 2 Farm Controller
3
045 Q@ . .
Electro- - § - Collaboration with @rsted
magnetic 9 — Estimating the region of attraction of controllersis
Transient 0.15 g an important part of the wind farm design process
(EMT) 000 — Need for Electromagnetic Transient
Simulation Simulations
- Goal: Determine the best set of controller
e parameters (controller tuning)
075 £
=
050 2 . Training PINNs with GPUs
3 (o}
045 O — collaboration with NVIDIA
PINN Q
0.30 S
0.15 %
0.00 E R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, I. Murzakhanov, S. Chatzivasileiadis,

Physics-Informed Neural Networks for Phase Locked Loop Transient Stability
Assessment, PSCC 2024 [ https://arxiv.org/abs/2303.12116 ]
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Simulations for Wind Farms:

Estimating the Region of Attraction of a Wind

W

ROA with time from PINN for a = 0.1

0.96
0.84 - Evaluation of 5 million points
0.72 § -
0.60 Is « EMT: ~2days @ DTUHPC
048 g . PII\!N.s: 90 minute.s for | 25x - 100x faster
Ko training and 30 minutes
0.36 ‘2 for evaluation
024 £
|_
0.12 « Added benefit: once trained,
0.00 PINN canrunonalaptop

R. Nellikkath, A. Venzke, M. K. Bakhshizadeh, |. Murzakhanov, S. Chatzivasileiadis,
Physics—Informed Neural Networks for Phase Locked Loop Transient Stability
Assessment, PSCC 2024 [ https://arxiv.org/abs/2303.12116 ]
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So, what can we do with PINNs?

i

1. Integrate them in existing simulators and accelerate them
1. How? Replace the components that slow down the simulation with PINNSs.
2. What are the components that slow down a simulation?
* The ones with the fastest time constants.

* Why? If acomponent changes fast = | need shorter time steps to capture
how it changes =2 i need more time steps to complete a simulation

2. Create a PINN-based Simulator 2 PINNSIim
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DTU Wind

Most conventional solvers use the Trapezoidal Rule

« Implicit numerical method

- Backbone of most power system dynamic simulators

(PSCAD, EMTP, PowerFactory, and more)

Power System Dynamics ODEs

—x = f(x,V,I,u), x(ty) = xq

Trapezoidal Rule

5 [ f(xeve) + f(Xe—ne, Veene)

Xt = Xt_pt T

7 August 2025

Trapezoidal Rule

f(z,y)

4
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Trapezoidal Rule: Quiz

W

At

Xt = Xp—pt T+ " [ f(xeve) + f(Xe—ne, Vemne)

When was the trapezoidal rule first used in history?
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Trapezoidal Rule: Quiz

W

At

Xt = Xp—pt T+ " [ f(xeve) + f(Xe—ne, Vemne)

When was the trapezoidal rule first used in history?

50 BCE, Babylon
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How can they integrate into simulations?

Conventional/Commercial method PINN Integration
At _ _
Xt = Xe—pe T > | f(xe L) + f(xpne Ie—ae) X¢ = Xp_pe + At PINN(x¢_pr, Ie—pe, 1p, At)
A A
Trapezoidal Rule PINN Approximation

Time t [ms]
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Conventional/Commercial method

At _ _
Xt = X¢_At T ) | f(xe, [) + femner l—ne) ]

Trapezoidal Rule

Time t [ms]

X; isin both sides of the equation = need iterations to solve it

DTU Wind

How can they integrate into simulations?

PINN Integration

Xe = Xe—pe + At PINN(xp—pe, Ie—pe, i) AL)

PINN Approximation

f(x,y)

Time t [ms]

Y

X; only on the left side = single-step

7 August 2025 DTU Wind Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?



DTU DTU Wind
:Plug-and-Play Integration of PINNS

Dynamic Components Approximation Methods Network Equations
N 1
c?tml = f(xq,1q7) _)[ml = Trapezoidal Rule(t, xz1,11) [€ >
/ Ty I]_
N V2
%mg = f(xzg, Is) _)[ r9 = Trapezoidal Rule(t, zo, I5) [€ >
4 Loy 12
V- _ _
A 3 _
I >[$3 = Trapezoidal Rule(t, g, Ig) [€ > I=YV
vy
d _ - r3, I3
di *3 = f(=3, I3) ==
dat ’ : N V3
- )[ zg = PINN(t, zg, I3) < >
< w3, I3
N Vn
ddt xn = f(xn, In) _)[:I:n = Trapezoidal Rule(t, xpn, In) [€ >
7 gy, In
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Replacing 1 component with a PINN
in dynamic simulations

i

4 8 9

1 1 3
2nd order
model

Load 1

Load 2 Load 3

6 |

H

« 9-Bus System (Machinesin buses1, 2, and .) 2 @

2nd order
model

« 14-Bus System (Machinesin buses1, . 3,6,and 8)
« 30-Bus System (Machinesin buses], . 5,8,11,and 13)

Bl marks the machine replaced with a PINN

DTU Wind

2nd order
model

PINN

DTU Wind
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= Integrating PINNs to dynamic simulations
o
4 8 9
‘ s I | 3
* Including1PINN improves the accuracy : |
of the fast component by up to 50%
Load 1
* Improves overall accuracy on average 5 5
1%6-18% Load 2 Load 3
6 .
IEEE9  9.5% 39.9%  17.9%  40.3% D
IEEE14  0.7% 40.5% 8.2% 40.8% i 6
IEEE30 1.8% 45.6% 8.7% 51.6%

I. Ventura-Nadal, J. Stiasny, S. Chatzivasileiadis, Integrating Physics-
Informed Neural Networks into Power System Dynamic Simulations,

More accurate simulations enable Iarger time steps Electric Power Systems Research, 2025, https://arxiv.org/pdf/2404.13325

l. Ventura-Nadal, R. Nelikkath, S. Chatzivasileiadis, Physics-Informed
Neural Networks in Power System Dynamics: Improving Simulation
Accuracy, IEEE Powertech 2025, https://arxiv.org/pdf/2501.17621

DTU Wind
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IEEE 30-Bus System Simulation

i

modelled
synchronous
machines

A — )  Traditional:
mm Traditional wmsm Hybrid _
1 /\ / \ - 6 conventionally

i —

. Hybrid:
- TPINN

efNG2 [mHz]_

U — 5 conventionally
! modelled
synchronous
machines

/
!
At = 20[ms] \v}
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Do you want to create your own PINNs?

i

Open-source Modular Python
Toolbox! Components:

. . - ODE definition & parameter configuration
GitHub/radiakos/PowerPINN

- Dataset generation (trajectories +
collocation)

« Preprocessing & sampling controls
« PINN training loop (PyTorch, Hydra, Wandb)
. Evaluation &visualization

I. Karampinis, P. Ellinas, I. Ventura-Nadal, R. Nellikkath, S. Chatzivasileiadis, A
Toolbox for Physics-Informed Neural Networks in Power Systems, IEEE
Powertech 2025, https://arxiv.org/pdf/2502.06412
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Results - PINNs trained from the toolbox

047 1
Synch Fonous o S S -
machine SM RS
with 9 states KRR

0 > 10 15 20

1 trajectory 50 trajectories 500 trajectories
ODE solver 10.81ms 94.06ms 940.61ms
PINN 1.95ms (x5.5) 3.82ms (x14) 8.59ms (x63)

Key point: PINN scales massively better due to GPU parallelization
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If we want to create a PINN-based simulator....

i

Are PINNs scalable?

Can we have a single PINN for 1,000 buses?

Learning takes longer
PINN accuracy drops

Short answer: probably not

What shall we do?
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Vision (Part )

i

.
1. PINNSim: Amodular power system E— e o
time-domain simulator E— = )
— Alibrary of component models implemented Convte Conmtol . . R
with Neural Networks -~ =
— “Drag’'n’drop” to create your system % %

- Acompletely new way of simulation which Z PINN 3
can be 10x-100x faster. Dynnic Load

— What does this mean? Instead of assessing Vervs CPINNS |
. . cy - ery first version of P im simulation engine:
100 scenarios leadlng toa blaCkOUt Wlthlﬂ 1 J. Stiasny, B. Zhang, S. Chatzivasileiadis, PINNSim: A Simulator for Power System

hour, | can now assess 10,000 scenarios Dynamics based on Physics-Informed Neural Networks, PSCC 2024.
https://arxiv.org/abs/2303.10256
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Are PINNs Trustworthy?

i

- They are as trustworthy as any reduced-order model

— Most reduced-order models come with no guarantees about worst-case
violation errors

— But, reduced-order models come from first principles, so we have picked
the equations that are relevant to us >we have an intuition which dynamic
phenomena we capture and which not

- Work on verifying PINNs
— If successful, for the first time we will have reduced-order dynamic models

— Major challenge: how do you verify (= optimize) through differential
equations?
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Physics-Informed Neural Networks for Power Systems:

Vision (Part )

2. Verify PINNs

— For thefirst time, deliver a worst-case
guarantee of the PINN approximation

— Deliver ML Surrogate Models with
approximation error guarantees

Efficient Error Certification for Physics-Informed Neural Networks

Francisco Eiras' Adel Bibi' Rudy Bunel® Krishnamurthy Dj Dvijotham* Philip H.S. Torr !
M. Pawan Kumar?

Abstract

Recent work provides promising evidence that
Physics-Informed Neural Networks (PINN) can
efficiently solve partial differential equations
(PDE). However, previous works have failed to
provide guarantees on the worsi-case residual er-
ror of a PINM across the spatio-temporal domain

a measure akin to the tolerance of numerical
solvers — focusing instead on point-wise compar-
isons between their solution and the ones obtained
by a solver on a set of inputs. In real-world ap-

mentioned challenge through physics-informed neural net-

works (PINN) (Raissi et al., 2019a; Sun et al., 2020; Pang

et al., 2019). For example, the Diffusion-Sorption equa-

tion — which has real-world applications in the modeling of
groundwater contaminant transport — takes 59.83s to solve

per inference point using a classical PDE solver, while infer-

ence in its PINN version from Takamoto et al. (2022) takes
only 2.7 x 105, a speed-up of more than 10* times.

The parameters of a PINN are estimated by minimizing
the residual of the given PDE. together with its initial and
boundary conditions, over a set of spatio-temporal training

Correctness Verification of Neural Networks Approximating Differential
Equations

Petros Ellinas ! Rahul Nellikath ' Ignasi Ventura ' Jochen Stiasny | Spyros Chatzivasileiadis '

Abstract

Verification of Neural Networks (NNs) that ap-
proximate the solution of Partial Differential
Equations (PDEs) is a major milestone towards
enhancing their trustworthiness and accelerating
their deployment, especially for safety-critical sys-
tems. If successful, such NNs can become integral
parts of simulation software tools which can accel-
erate the simulation of complex dynamic systems
maore than 100 times. However, the verification of
these functions poses major challenges: it is not

Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust

providing a formal bound on the lowest accuracy across the
relevant input domain. The concept behind correctness guar-
antees involves determining the worst-case approximation
error in the input domain D and it can be formulated as an
optimization problem

max u(z) — uglz)|, (0

where u(z) is the ground truth solution, and wg(z) is the
NN function approximation with weights 8. Here, = £
D is a point in the input domain . The argument that

mavimirar {1 indicatac whars tha anneayimator hac ths

DTU Wind

F.Eiras, A. Bibi, R. Bunel, K. Dvijotham, P. Torr, M. P. Kumar, Efficient Error Certification for
Physics-Informed Neural Networks, ICML 2024, https://arxiv.org/pdf/2305.10157

P.Ellinas, R. Nellikkath, J. Stiasny, S. Chatzivasileiadis, Correctness Verification of Neural
Networks Approximating Differential Equations, https://arxiv.org/abs/2402.07621
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Interested in a PhD or Postdoc on Trustworthy Al
and PINNs for Power Systems?

i

« We have open postdoc positions!

« Sendan email to spchatz@dtu.dk

j E\n.hi' |

"..;,.I. [‘ S
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Hands-on Tutorial: DU Wind
Physics Informed Neural Networks for Power
Systems

i

Indrajit Chaudhuri Rahul Nellikkath Ignasi Ventura Nadal
Intern Postdoc PhD student
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Tutorial code:
Physics-Informed Neural Networks for Single
Machine Infinite Bus
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« Google Colab Python Notebook

https://colab.research.google.com/drive/1plxP
Zf-Adh-
sPsFwpmcDbPqgClwAwp_g1?usp=sharing#scrol
| To=irggIR1yzyIO
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DTl Hands-on Tutorial: o10 ving
= Physics Informed Neural Networks for Power
Systems

1. Youneed Google credentials. Otherwise, you need to see from the person sitting
next to you

2. https://colab.research.google.com/drive/1plxPZf-A4h-
sPsFwpmcDbPgClwAwp_g1?usp=sharing#scrollTo=irgg|R1yzylO

3. File 2 Save a Copy in Drive (so that you can edit the notebook)

4. Runeach snippet of code

5. Anumber of Tasks to perform at theend

- E.g.Changethe PINN Test parameters in “Testing the performance of the
neural network”

7 August 2025
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Questions

i

1.  Whatis the activation function we use for the neural network?

2. How many layers and how many neurons?

3. How many collocation points?

4. Whatis the time range of the dynamic phenomenon that we train for?

5. How many inputs? How many outputs?
« Which are those?

6. How manyepochs do we train for?

7. How many initial conditions do we train for?
+ Whatistheir range?
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Trustworthy Al for
Power Systems
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Al is already creating value in Energy Systems

Load Forecasting

Weather Forecasting

Predictive Maintenance

Energy Trading (forecasting
of prices or quantities)
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DTU Wind

Al is already creating value in Energy Systems

Load Forecastin

8 « ANNSTLF: Probably the
first tool based on
Machine Learning in
Power Systems

Weather Forecasting

Predictive Maintenance

« Developed by EPRI
(Electric Power Research
Institute) in the US

Energy Trading (forecasting
of prices or quantities)

- Firstdeployedin1992in
Texas. Deployed to 32
utilities by 1997
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Al is already creating value in Energy Systems

Load Forecasting

Weather Forecasting

Predictive Maintenance

Energy Trading (forecasting
of prices or quantities)

Google Graphcast: Al is already better than physical
models for global weather forecasting

7 August 2025
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Al is already creating value in Energy Systems

Load Forecasting fl . Combination of images

with other sensor data to
predict failures

Weather Forecasting

Wl |- IEA: digitalization can
Bl helplower maintenance
costs of electricity grids
by 5% = 80 billion EUR

Predictive Maintenance

Energy Trading (forecasting s [ | 'i
of prices or quantities) ~ - R [

Y
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Al is already creating value in Energy Systems

- Load Forecasting

OOO.QOQOO@Omﬂ“@

T'f \' .

- Weather Forecasting

,...,..Q e 2 ® ® @ @ & e’ ® ® @ b

| . 00000‘0’90'06"“@00
« Energy Trading (forecasting s 5 : |
of prices or quantities) - . ) O . 9 ” y._ - . 9 o . \9
o 0000@000000000

1"“"1.
GS
Q] 0000000000000

% = ] =)

« Predictive Maintenance
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But Al can do alot more things

Process massive amounts
of texts (e.g.regulations,
manuals, procedures, etc)

Virtual assistant: Helping
maintenance technicians
with step-by-step
instructions

Support for decision
making

And many more

7 August 2025

DTU Wind

A tomie {

I wonder how much money OpenAl has lost in electricity costs from
people saying “please” and “thank you” to their models.

ﬂ Sam Altman @ E

tens of millions of dollars well spent--you never know

@evolving.ai
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But: Would you ever trust Al to run your
electricity network?
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But: Would you ever trust Al to run your
electricity network?

What would you do to make it
trustworthy?




DTU Wind

= Making Al Trustworthy: My View

Verify Al
Making it safe to deploy as is

Performance

Guarantees

1. your Al tool will never
violate the voltage
constraints

2. Or,your Al tool will violate
the voltage constraint by
XX % in the worst-case

Y Horizon Europe Y

veriphied.ai  gj-effect.eu/

Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?
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DTU Wind

= Making Al Trustworthy: My View

Verify Al
Making it safe to deploy as is

Performance

Guarantees

1. your Al tool will never
violate the voltage
constraints

2. Or,your Al tool will violate
the voltage constraint by
XX % in the worst-case

Y Horizon Europe Y

veriphied.ai  gj-effect.eu/

Use Al as Decision Support

Take the Al output Use the Al output as a
and projectittoa warm-start for an
feasible space optimizer (or to predict the
active constraints)

Use the Al to screen
millions of scenarios.
Assess with conventional
tools the most critical ones

7 August 2025
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D-I-U DTU Wind
= Making Al Trustworthy: My View

Verify Al Use Al as Decision Support
Making it safe to deploy as is “ e
3  Performance Take the Al output Use the Al output as a
% Guarantees and projectittoa warm-start for an
1. your Al tool will never feasible space optimizer (or to predict the

violate the voltage

constraints active constraints)

2. Or,your Al tool will violate
the voltage constraint by
XX % in the worst-case

Use the Al to screen
o millions of scenarios.

| Assess with conventional
veriphied.ai  gj-effect.eu/ tools the most critical ones
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A lot of recent developments for trustworthy Al

« April 2021: The EU is promoting rules for -
Trustworthy Al TN

. Visit of Ms. Margrethe Vestagerat DTU

— EU Commissioner of Competition, : ;

Executive Vice President of "A Europe Fit ! A ‘ B

for the Digital Age” -

— In April 2021, Ms. Vestager proposed new
rules and actions aiming to turn Europe

into the global hub for trustworthy Artificial - o _'._ n- i ‘
Intelligence w R I
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A lot of recent developments for trustworthy Al

- World-leading optimization tool: Starting with Gurobi 10.0, Gurobi supports Neural Network
verification since 2023

Gurobi Optimizer

Gurobi 10.0 also includes the following advances in the underlying algorithmic framework:
& New network simplex algorithm — Greatly speeds up solving LPs with network structure.

& New heuristic for QUBO models, which can arise in quantum optimization — Improves Gurobi's
ability to quickly find good feasible solutions for quadratic unconstrained Boolean optimization

problems

& Significant performance gains on MIPs that contain machine learning models — Resulis in a
more than 10x improvement on certain models that contain embedded neural networks with
RelU activation functions.
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A lot of recent developments for trustworthy Al

« Tailored MILP solvers for NN Verification
— Alpha-beta-crown is the winning algorithm

6th International Verification
of Neural Networks
Competition (VN N_COM P|25) . Ece)zg;l]s;trig(r)]stly on Image Classification/ Image

- Key for medical applications such as recognition of
MRl images, for self-driving car applications, and
others

— Over 100x speedup

o Thereis an effort to submit models related to
power systems, so that participants can test and
develop verification algorithms with focus on
power systems (we also tried to submit some power

https://sites.google.com/view/vnn2025 system models, but we did not manage to complete our
effort)
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Accelerating Verification: o,J-CROWN for DC-OPF

Table 1. Performance comparison of Gurobi and
a, f-CROWN solvers on the IEEE 300-bus test case.
Gen scale ) Gurobi o, 3-CROWN

Gap, % Time, sec Time, sec

0.8 X 26.9 43 6.00

09 X 79.0 37 5.60

1.0 X 150 35 5.71

1.1 X 511 39 5.58

1.2 v 1726 >3600 (dnf) 18.03

a,3-CROWN 7x-300x faster than Gurobi

- We formulated the power system
verification problem in a way that can be
solved by a,-CROWN.

« o,-CROWN now verifies for multiple line
flow violations and not only one at a time

« a,-CROWN much faster than Gurobi 10.0

S. Chevalier, I. Murzakhanov, S. Chatzivasileiadis, GPU-
Accelerated Verification of Machine Learning Models for
Power Systems, Best Paper Award at HICSS (Hawaii
International Conferences on Systems Sciences), Jan.
2024 https://arxiv.org/pdf/2306.10617
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A lot of recent developments for trustworthy Al

. Interpretable Al
- SHAP: Shapley Additive Explanations

« Sensitivity Factors that explain the output of a
model

https://shap.readthedocs.io/en/latest/

- Predicting the net production of PV+Load
. Positive =2 PV>load; Negative PV<load

High
HLoad . ..»
HPow .
Irra
PTemp
DPow
STemp
. . T . Low

-4 -3 -2 -1 0 1 2
SHAP value (impact on model output)

Y.Lu, I. Murzakhanov, S. Chatzivasileiadis, Neural network interpretability for
forecasting of aggregated renewable generation. In IEEE SmartGridComm
2021, Aachen, Germany, October 2021.[ .pdf | code ]

DTU Wind Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?

Feature value


https://arxiv.org/abs/2106.10476
https://github.com/yucunlu/Interpretability
https://shap.readthedocs.io/en/latest/

=
—
—

i

DTU Wind

Kolmogorov Arnold Networks

r—-— - - - - - - - - - — — — — = 1
|

Vanilla NN

w1

bo

w9 Y

|
|
|
|
|
|
— |
|
|
|
|
|
|
|

H. Shuai, F. Li, Physics-Informed Kolmogorov-Arnold Networks for
Power System Dynamics, https://arxiv.org/pdf/2408.06650

P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S.
Chatzivasileiadis, Physics-Informed Machine Learning for Power System Dynamics:
A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and
Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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Kolmogorov Arnold Networks

i

P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S.

Chatzivasileiadis, Physics-Inf d MachineL ing for P System D ics:
H. Shuai, F. Li, Physics-Informed Kolmogorov-Arnold Networks for atelvasiieiadis ySICS.S rrorme a.C ne earmng O FOWer Sys Qm YRamIcs
P Sustern D s hitos: . 4f/2408.06650 A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and
ower System Dynamics, https://arxiv.org/pdf/2408. Networks, Elsevier, 2025. https://doi.org/10.1016/i.segan.2025.101818
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Kolmogorov Arnold Networks

i

- KANs are potentially more interpretable than PINNs (less neurons, trained activation functions
which can give some insights)

INn our tests:
« KANs are more accurate than PINNs
« KANs are slower than PINNs

BerINN BB PI-KAN IO ODE Solver

6 250 -
6-10 =
200 2 g
= .10~ % -
o 410 150 2 E
E L O
_ 100 T
2-107° =2
50 E

. . . . ] ] [ ] .

2D 4D 6D 2D 4D 6D

P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S.
Chatzivasileiadis, Physics-Informed Machine Learning for Power System Dynamics:
A Framework Incorporating Trustworthiness, Sustainable Energy, Grids and
Networks, Elsevier, 2025. https://doi.org/10.1016/j.segan.2025.101818
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Preview:
What are the main takeaways of this final part?

3.

Energy systems are safety-critical systems. When you develop Al (or OR) approaches think:
can my method be trusted? What shall | do to guarantee a safe operation?

Al needs OR.
- Major challenges: tractability for realistic size power system problems. There are a lot of
cool tricks we can invent to scale these methods

Do not try to reinvent the wheel. Why should you train an RL agent assuming no prior
knowledge, when you e.g. have a detailed model of the battery you want to control? Develop

methods that combine the strengths of physics-based and data-driven methods.
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European Research Council

Neural Network Verification
for Power Systems

A.Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power System Applications.
In /EEE Transactions on Smart Grid,vol.12,no.1, pp.383-397, Jan. 2021, https://arxiv.org/pdf/1910.01624.pdf

V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed integer
programming,” in International Conference on Learning Representations (ICLR 2019),2019
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Guiding Application: e

Security Assessment with Neural Networks

Approaches proposed up to now
ST 5. Use the NN

i

\\/ |npUt:
U W24 Uy @) ti int
& % perating poin
Database of % v e
secure/insecure o > N §<
operating points % G . o
| was | U8 V"
\/ secure/
insecure
_ . 2. Traina neural network NN Output:
1. Splitthe database in a Binary classification:
trainingsetand a test set 3. Test the neural network secure/insecure
4. |s accuracy high enough? Extremely fast: up to

100x-1"000x faster
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Neural Network Verification: HOW?

i

European Research Council

1. Exacttransformation: Convert the neural network to a set of linear equations with binary
variables

- The Neural Network can be included in a mixed-integer linear optimization problem

2. Formulate an optimization problem and solve it = certificate for NN behavior

3. Assessif the neural network output complies with the ground truth

7 August 2025 DTU Wind Spyros Chatzivasileiadis — Machine Learning for Power Systems: Is it time to trust it?



=
—
—

=  From Neural Networks to 5
Mixed-Integer Linear Programming
Non-linear Linear weights . Most usual activation function: ReLU
activation
functions \ /
e RelLU: Rectifier Linear Unit
Woy
U, W S— Uy
0 @ A
4 output
3
%
Uus Usg >
W3s input
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=  FromNeural Networks to N
Mixed-Integer Linear Programming G,
Ny
AV i Q&

1.  ButRelLU can be transformed to a piecewise
linear function with binary variables

A

output

v

input
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DTU Non-linear Linear weights DTU Wind
=  From Neural Networks to N
Mixed-Integer Linear Programming G,
Ny
%Q, u . A

1.  ButRelLU can be transformed to a piecewise
linear function with binary variables

A

output

/
/
/

v

input
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DTU Non-linear Linear weights DTU Wind
=  From Neural Networks to AN
Mixed-Integer Linear Programming G,
Ry
Z \Mb

1.  ButRelLU can be transformed to a piecewise
linear function with binary variables

output | 2. lcanencode all operations of a Neural Network
/ » to a system of linear equations with continuous
/, and binary variables

v

3

3. Icanintegrate allinformationencodedina
neural network inside an optimization
program

input
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Certify the output for a continuous range of inputs

e correct safe
e correct unsafe

e misclassified
X verification samples

Pgo (norm.)

European Research Council

1.  Weassume a given input X, with
classification “safe”

A.Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power
System Applications. /EEE Transactions on Smart Grid, Jan.2021. https://arxiv.org/pdf/1910.01624.pdf
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Pg3 (norm.)

e correct safe

e correct unsafe
e misclassified
X verification samples

Pgo (norm.)

Lrecteesest

Certify the output for a continuous range of inputs e

European Research Council

1.  Weassume a given input X, with
classification “safe”

2. Solve optimization problem: Does
classification change for any input
within distance € from x_;?

3. Ifnot, then I can certify that my neural
network will classify the whole
continuous region as “safe”

4. |canrepeat this for other regions and
different classifications

A.Venzke, S. Chatzivasileiadis. Verification of Neural Network Behaviour: Formal Guarantees for Power
System Applications. /EEE Transactions on Smart Grid, Jan.2021. https://arxiv.org/pdf/1910.01624.pdf
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European Research Council

Provable Worst-case Guarantees

Venzke, G.Qu, S. Low, S. Chatzivasileiadis, Learning Optimal Power Flow: Worst-case Guarantees for Neural
Networks. Best Student Paper Award at IEEE SmartGridComm 2020. https://arxiv.org/pdf/2006.11029.pdf

R. Nellikkath, S. Chatzivasileiadis, Physics-Informed Neural Networks for Minimising Worst-Case Violations in DC
Optimal Power Flow. In IEEE SmartGridComm 2021, Aachen, Germany, October 2021.

R. Nellikkath, S. Chatzivasileiadis. Physics-Informed Neural Networks for AC Optimal Power Flow. 2021.
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Key Enabler:
our ability to represent the underlying ground
truth

i

Main idea:

- Take advantage of the ground truth representation we have, i.e. the power system models

- Measure the performance of the Neural Network against the ground truth
— Does the Neural Network violate constraints?

- Determine the worst-case performance = provable worst-case guarantees
— Across the continuous input domain
— No Sampling
- Instead, we solve an optimization program

— Once “certified”, we can use directly the Neural Network (no need to re-run the optimization
program)
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DTU Worst violation over the || Our algorithm: provable
oo whole training dataset | | worst-case guarantee over
European Research Council
Empirical Exact worst-case . .
1 Maximum violation of
lower bound guarantee g e
generator limits
Test cases Vg line Vg Vline Mayi olati ;
aximum violation o
(MW)  (Mw) | (MW)  (MW) Viine ooy
line limits
case9
case30
case39
casebrs
casell8
casel6?

case300
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Worst violation over the
whole training dataset

(training+test set)

Our algorithm: provable
worst-case guarantee over
the whole input domain

Empirical Exact worst-case
lower bound guarantee

Test cases Vg Uline Vg Vline

(MW)  (MW) | (MW)  (MW)
case9
case30
case39
casebrs
casell8
casel62

case300 474.5 692.7 | 3658.5 3449.3

A

European Research Council

Vg Maximum violation of
generator limits

Maximum violation of

L; ) .
line  jine limits

Over the whole input domain
violations can be much larger
(here ~7x) compared to what
has been estimated empirically
on the dataset

7 August 2025 DTU Wind
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DTU Worst violation over the || New algorithm: provable
oo whole training dataset | | worst-case guarantee over
o . .
European Research Council
Empirical Exact worst-case . .
1 Maximum violation of
lower bound guarantee g e
generator limits
Test cases Vg line Vg Vline Mayi olati ;
MW MW MW MW ) aximum violation o
( ) ) ( ) ( ) line  Jine limits
case9
case30
case39 We can now provide guarantees
that no NN output will violate
case5/ | 4.2 0.0 | 23.7 0.0 f¢ the line limits over the whole
input domain
casell8
casel62

case300
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Reducing the worst-case violations

Max violation — 100

28 == U|ine === g ==pte U/({jst ===t Lopt ||

40 —

20 —

No violation — () %3¢ % X
0 0.04 0.08 0.12 0.16 0.20

Input domain reduction 9 (-)

Training e
Dataset: Use on a se for a
Load Domain subdomain smlgle point

on
[60%-100%] y
Train
Train

Train and use on
the same domain
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What shall we do next?

1. Integrate worst-case violations in NN training?
2. Graph-Neural Networks for N-k Security Assessment?

3. Play with a PINN?
- Google Colab Notebook

4. Conclude and Discuss?
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What shall we do next?

1. Integrate worst-case violations in NN training?
2. Graph-Neural Networks for N-k Security Assessment?

3. Play with a PINN?
- Google Colab Notebook

4. Conclude and Discuss?
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Integrating Worst-Case
Violations in NN training
-- Begin
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Worst-case Violations: What is the next natural
step?

Integrate the worst-case violations /nside the neural network training procedure

i

Our "Holy Grail”: Design a Neural Network training procedure that:
« produces a Neural Network with best average performance,
« anddelivers guarantees about its worst-case performance
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DTU Wind

Worst-case Violations: What is the next natural
step?

Integrate the worst-case violations /nside the neural network training procedure

Our "Holy Grail”: Design a Neural Network training procedure that:
« produces a Neural Network with best average performance,
« anddelivers guarantees about its worst-case performance

(Random) Example of an imaginary final message:

- "Neural Network Training finished. Accuracy 99.2%. Worst-case violation of critical
constraints: 10%.”

Wouldn't that create a good level of trust for applying NNs on any safety-critical system?

Extends beyond power systems = drones, air-traffic control, robots, control of inverters,
and others

7 August 2025
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How can we integrate worst-case violations in NN training?
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« Standard NN training

: 1
min Ly = min— Z €r; — I;
w,b 0 w,b N\ - | ‘
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« Standard NN training

« NN training which penalizes constraint violations
— Reduces the violations for the training dataset

See Fioretto, Mak, Van Hentenryck, AAAI, 2020,

and others

DTU Wind

How can we integrate worst-case violations in NN training?

: o1
111111 ,Cg = 1min T Z | €r; — I;

W, b w.b 1

min  AoLo + AL,
w.b
for generator

.9. Lp =1y =(pg =1y ") constraint violations

7 August 2025 DTU Wind
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DTU Wind

How can we integrate worst-case violations in NN training?

Standard NN training

NN training which penalizes constraint violations
— Reduces the violations for the training dataset

See Fioretto, Mak, Van Hentenryck, AAAI, 2020,
and others
NN training which penalizes worst-case violations
— Worst-case violations might be on datapoints that do
not belong to the training dataset. And we might just
discover it when we deploy the NN in a real application

« thisisamajor fear of any power system operator
(and a main barrier for the NNs in safety-critical
applications)

: 1
min Ly = min <= Z | z; — a5 |

w.b w.b |

min  AoLo + AL,

w.b

for generator
constraint violations

_ -ma:c)

e.g. L, =v, = (pg — p,

min  AogLo +ALLye

W

b

we —— C q
D

Hard bilevel optimization problem
1.  LowerlevelisaMILP

2. TheMILP must be differentiable so that
the NN training can backpropagate

7 August 2025
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DTU Wind
— Some thoughts
“ [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
on how to design an NN training that minimizes worst-case violations
1. Fixthebinaries —
Neural Network Training Process
« Arbitrary assumption (but it works): for small | k Wi, by G =
. . . . . . Neural Networ ES
perturbations of weights & biases, binaries remain D a6 6 @ :3
constant D o o e @ é MAE oy | B
. Solve the lower level MILP by itself, find the binary values ®/ b/ b @ — s
for the max constraint violation and fix them remeraton :
Wi b MILP fo?a(l:fst{ase net) S Ly f
2. MILPisconvertedtoan LP = itis now differentiable ) 5
2

3. Castitasadifferentiable optimization layer (we use CVXPY)
—> NN training can now backpropagate through it

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf
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DTU

DTU Wind
— Some thoughts
o ° e o e o ° ° °
on how to design an NN training that minimizes worst-case violations
1. Fixthebinaries —
Neural Network Training Process
« Arbitrary assumption (but it works): for small e N Wi, by G -
. . . . . . eural Networ| =
perturbations of weights & biases, binaries remain ; ; B @ :3
constant D o o e @ é MAE oy | B
« Solve the lower level MILP by itself, find the binary values VA Vo W — s
for the max constraint violation and fix them e ferten :
Wb MILP fo?a(l:fst{ase net) B Ly f
2. MILPisconvertedtoanLP = itis now differentiable Gy *=tus ) B 5
2
3. Castitasadifferentiable optimization layer (we use CVXPY) B Case 35
—> NN training can now backpropagate through it 1 "I I Case 57
4. Reduce complexity: reduce #weights and #biases to a a ox
adjust = w, b of last layer had the largest impact 2

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf

7 August 2025 DTU Wind

wi w2 w3 wd

0
b1 b2 b3

b4

Derivatives of weights and biases on each of
the 4 layers w.r.t. worst-case violations
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Test Cases MAE (%) Worst-Case Guarantees
Max. Generation Violation
w.r.t. Max. Loading

i

NN
case39 GenNN
WCNN
NN
caseS7/ GenNN
WCNN AC-OPF
NN
casell8 GenNN
WCNN
NN
casele2 GenNN
WCNN

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of
Neural Networks. https://arxiv.org/pdf/2212.10930.pdf

NN: standard NN DTU Wind

GenNN: penalizing violations in the
Loss Function

WCNN: our approach; penalizing
worst-caseviolations
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g Test Cases MAE (%) Worst-Case Guarantees
- Max. Generation Violation
w.r.t. Max. Loading
NN 0.56% 0.67%
case39 GenNN 0.55% 0.67%
WCNN 0.47% 0.00%
NN
caseS7/ GenNN
WCNN
NN
casell8 GenNN
WCNN
NN
casele2 GenNN
WCNN

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of

Neural Networks. https://arxiv.org/pdf/2212.10930.pdf

NN: standard NN DTU Wind

GenNN: penalizing violations in the
Loss Function

WCNN: our approach; penalizing
worst-caseviolations

Good average performance
and minimum worst-case
violations are not
necessarily competing
objectives

Surprising: WCNN not only
eliminates all violations, but
manages to find a lower
minimum for the average
performance as well

7 August 2025 DTU Wind
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DTU Wind

DTU NN: standard NN
-— TestCases MAE (%) Worst-Case Guar_ante_es GenNN: penalizing violations in the
- Max. Generation Violation Loss Function
w.r.t. Max. Loading WCNN: our approach; penalizing
NN worst-caseviolations
case39 GenNN
1. Forlarger systems, the
WCNN . .
worst-case violations are
NN large
caseb/ GenNN
WCNN 2. WCNN manages to reduce
NN 0.42% 204.60% them by 50%
casell8 GenNN 0.42% 213.80%
WCNN 0.42% 109.83% 3. Reducing Worst-Case
NN Violations does not affect
average performance!
casele2 GenNN
WCNN

A lot more work is needed to

R. Nellikkath, S. Chatzivasileiadis. Minimizing Worst-Case Violations of

Neural Networks. https://arxiv.org/pdf/2212.10930.pdf

improve scalability and
performance!

7 August 2025
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7 August 2025

Thoughts on
Minimizing Worst-Case Violations of Neural Networks

What did | show?

1. Verify the output of a trained NN — Contributions

2. Incorporate the ground truth in #1 = determine worst-case violations of a trained NN from our group
3. Incorporate #2in NN training >for the first time, create a NN training procedure that % which canbe
can determine and reduce the worst-case violations quring training used in the field
_J ofMLtoo

Why does it work?
— Because we have a physical model of the process that our NN emulates

What are the challenges?
One approach for scalability:

- Computational performance =2 it takes too much time S. Chevalier. S. Chatzivasileiadis

— Scalability = how can we verify larger neural networks (or consider more Global Performance Guarantees
complex ground truth representations) for Neural Network Models of AC
Power Flow

- How can we always achieve zero MILP gap = obtain the performance guarantee?  ntips://arxiv.ore/abs/2211.07125

Solutions? .....
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Integrating Worst-Case
Violations in NN training
-- End
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(Physics-Informed) Graph Neural
Networks for Fast N-k Security
Assessment

--Begin

'''''''''
------

Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis
of Power Systems, 2025. Online https://arxiv.org/abs/2310.04213 o
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i

Agnes Nakiganda, Spyros Chatzivasileiadis,
Graph Neural Networks for Fast Contingency
Analysis of Power Systems, 2025. Online
https://arxiv.org/abs/2310.04213

Agnes Nakiganda
Postdoc
Imperial College (formerly with DTU)

7 August 2025
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Whatis the goal?

Train a Graph Neural Network to estimate voltages and line flows of N-k contingencies

Use GNN as a fast screening tool!

Training only on base topology (N-O) and all N-1 cases

Estimate line flows and voltages for all N-2 cases and N-3 cases
— No N-2 and N-3 cases were used for training
— N-2 and N-3 were used only for testing

Why GNN? Because it captures topology
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Why?

« 118-bus - >700'000 N-3
contingencies for a single

TABLE 1 generation and demand scenario

CHARACTERISTICS OF THE TEST NETWORKS

Network 6-Bus  24-bus  57-bus 118-bus
« Assume 19 generators with a high
Nodes 6 24 S7 I18 and low generation scenario
Branches 11 33 63 173
Transformers 0 S 17 13 _
Generators ) 10 6 53 « Assume a high and alow demand
Loads 3 17 42 09 profile (all loads vary uniformly)
Eligible N—1 topologies 11 32 62 166
E]lglble N—-2 TOpO]OgleS 55 505 ] ’928 147408 « Total: 'I,OO0,000 scenarios X
Eligible N—3 topologies 165 4°885 377765 [793°206 700,000 contingencies = we

need to assess over 700 billion
scenarios...!
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What will we talk about?
- 2 Different Graph-Aware Neural Networks \ 1. Investigate the performance of 4 different Graph-
— Guided Droupout Aware Neural Networks
- Edge_Varying Graph Neural Network 1. Guided DrOpOUt without PhySiCS-InfOrmed
2. Guided Dropout with Physics-Informed
. With and without a Physics-Informed Loss Term and 3. Edge-Varying Graph Neural Network without
equations PhySICS-meFmed
— Thefirst to define and investigate a Physics- 4. Edge-Varying Graph Neural Network with
Informed Guided Dropout Neural Network Physics Informed
- Among the first to work with Physics-Informed
Graph Neural Networks 2. Compare their performance with DC Power Flow
j which is considered a standard tool to assess fast

N-k contingencies

3. Assess their performance in terms of time
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- Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici,
G u 'd ed D ro pO Ut N e u ra l N etwo rk “Fast power system security analysis with Guided dropout,” 2018

)

i

Base Case N-0O

Conditional
Neurons are
out

Bus target values

Bus power injection
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Gu 'ded-DrOPOUt Neu ral Netwo rk Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici,

“Fast power system security analysis with Guided dropout,” 2018

i

Base Case N-0O

Conditional
Neurons are
out

1 N-1; Line1out
Conditional
Neurontlisin

Bus target values

Bus power injection

Bus power injection
Bus target values

N-1: Line 2 out

Conditional
Neuron?2isin

Bus target values

Bus power injection
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Gu 'ded-DrOPOUt Neu ral Netwo rk Ref: B. Donnot, I. Guyon, M. Schoenauer, A. Marot, and P. Panciatici,

“Fast power system security analysis with Guided dropout,” 2018

i

BaseCase N-O . 1. N-T;Linetout £ g
Conditional :% ;5; Conditional g - B
Neurons are g g Neuronlisin & 5
out 3 ) e )
N-1;Line 2 out c 1, N-2;Lines1and £ 8
Conditional ] E 2 are out : -3
. e 5 . g é 8
Neuron2isin 2 2 Conditional F E
. J " Neuronsland 2 ’
are in
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Guided-Dropout Neural Network 72 oot uon b Schoenauer & Marot and b Panciatics

“Fast power system security analysis with Guided dropout,” 2018
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We train for this

BaseCase N-O . ) N-T;Linetout £ g
Conditional E 3 Conditional 3 5
Neurons are 4 = Neurontisin :
out | :

N-1; Line 2 out : N-2;Lines1and & Q @ | g
Conditional : 2 areout s e {@ 5
Neuron?2isin s Conditional Q ' { :

: Neuronsland?2 EANAN Q L/ @ ’
are in




HE

Graph Neural Networks

DTU Wind

e ®®) encodesthe NN weights based on the graph adjacency matrix = Neurons are connected
based on the topology of the network

kA

HH
—
b2
—

POx 4+ dDWPOxy + P@PDPO)x 4 ...

Ref: Isufi, E.,, Gama, F., and Ribeiro, A.: EdgeNets: Edge
varying graph neural networks, IEEE T. Pattern Analysis

7 August 2025
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Physics Informed Graph-Aware Neural Networks

o
o
o
Physics-Informed Guided Dropout Physics-Informed Graph Neural Network
@ @ 5 >V @ 2 @ >Y
2 0 g 2 = &
. s] =) o] =] © -
i (] | E L - et
x_g—l" I.E > % — E ¥ b X—> I.E » % — § ¥ 3
(wh o @] @
- = £ L, L L,
= O = 0 = > 2 0
(%))
%) 0l 2 7 Al s
- ik
--------------------------------------------- 3 8| 3 TR R 218
a 21 3 ° Z| 8
< == € oy
min(Ly + L) g min(Ly + L) 2
-z S < g
o +
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= Physics-Informed NNs do not always perform better
Guided Dropout Graph Neural Networks PINNS vS non-PINNs
I w/o PINN w PINN —==- mcan w/o PINN mean w PINN
! ! « Physics-Informed Graph Neural
10 k — ! - ' 6 bus
i o I [6 0 Networks perform better than
0 m. ; 0 - 1 non-Physics-Informed
0.000 0.005 (1.010 0.00 0.01 0.02
1 |
200 k | 250 k — ! | 24 bus
i |
& 0 o0 os oto ot 0 o0 o o5 A « Non-Physics-Informed Guided
%} o T 200 & . Dropout perform better than
& I : |57 bus Physics-Informed Guided Dropout
| |
0 - | | 0= — |
O'OI v - "0 | i - - Fortherestof our comparisons,
500 k - |1 1M ! [118 bus we limit ourselves to 2 models:
0 |: I I 0= i | T I - GDNN
0.0 0.5 1.0 0.0 0.1 0.2 0.3 _ PI-EVGNN

Mean absolute voltage error in p.u.
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GNNs for Regression: Estimating the line flows

N-1

Guided Dropout Graph Neural Networks
2

-
-
-
-
-

2 —
”"
-
‘‘‘‘‘ 6 bus
==
/ ______
. g
0 T 0+=

Predicted line loading in p.u
: . .
o] —_ =
1
A
1
Ay
by
1
A
1
Y
A
\
\
v
\
L)
[N}
[
1
\
A
A}
i
1
1
1
4
A
1
A
-5
A
1Y
A
|
1
v
\
A
v
4
o
-1
o
=
o

0 . . 0.0 4= :
5 10 0 2 4
— 1 —
251 @ | e - 118 bus
0.07‘ : 0 +=—== :
0 9 100 0.3 1.0

Actual line loading in p.u
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GNNs for Regression: Estimating the line flows

No training on N-2 and N-3, only testing!

N-1 N-2 N-3

Guided Dropout Graph Neural Networks Guided Dropout Graph Neural Networks Guided Dropout Graph Neural Networks
2

2.5 -
] -

0.0 T T
3 0

—
-
-
_____ 24 bus
"’

-
-
-
-
-

2 —
”"
- s
,,,, 6 bus
==
/ ______
. g
0 T 0+=

: — 2 —
2.5 T i
. e N
g 0.0 T T 0 T == T

Pl
-
-
-

37 bus e 47 bus

-
-
-
-
——
-

Predicted line loading in p.u
=
o] —_ =
A
1
1
A
1
A
v
A
\
\
‘\
[N}
[
1
1
4
A
1
LY
-5
A
1Y
A
|
\
!
I
]
o
=
o
Predicted line loading in p.u

Predicted line loading in p.au

1M8bus & N -7 | L R 118 bus
0-+= T

0 2 4 0.0 0.5 1.0 . 5. . 1.0 0.0 0.5 1.0
Actual line loading in p.u Actual line loading in p.u Actual line loading in p.u

. Estimating the bus voltages had in general a better performance from the line flows

More info here: Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis of Power Systems, 2025.
Online https://arxiv.org/abs/2310.04213
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GNNs vs DC Power Flow: Estimating Line Overloadings

i

N-1

[- DCPF B GDNN [ EVGNN]

100.0 98.2 97.8 913 98.7
. 100 - 6 bus
g 19.0
g U-
=
s 99.7 94.5 97.9
=, 100 + 58.1 924 bus
%o 36.0
= 1.0
£ ] el
av]
=
j4D)

62.7 57 bus

:E iR 38.6
—~
£
E 100.0 98.9
z 100 - e 118 bus
~ 42.3 34.7
15 0

Un-congested Congested

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

DTU Wind
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% Recall for line loading predictions

N-1

[- DCPF B GDNN [ EVGNN]

100

6 bus

24 bus

57 bus

118 bus

100.0 98.2 97.8 913 98.7
I 19-0
0_
4 997 945 97.9
1.0
- el
62.7
59.0 23 6
| 100.0 g5 1 989
0_
Un-congested Congested

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class

% Recall for line loading predictions

o
l 1

No training on N-2

and N-3, only testing!

N-3

[- DCPF B GDNN [ EVGNN]

100 4 86.2 884 95.2

6 bus

24 bus

749 82.9
0 -
98.6 94.7 98.7
2.3 29-0 13.7
100.0 94.4 100.0
34.9

05 B0 |

57 bus

100.0 924 98.1

37.7 36.8

Un-congested

— mall

Congested

118 bus

DTU Wind

GNNs vs DC Power Flow: Estimating Line Overloadings

- DCPower Flow
performs the
worst: cannot
estimate any line
congestion

« Both Guided
Dropout and
Graph NN perform
better, but not
much better

7 August 2025
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N-1 No training on N-2 N-3
and N-3, only testing!

« DC Power Flow

I DCPF EEE GDNN [ EVGNN]
performs the

. worst: cannot
3 estimate any line
45 .
= = congestion
& @ 98.6 94.7 98.7
o, o, 24 bus
= = 9 13.7
< 2 ——
% — ?Cj 100 4 1900 913 1000 — - Both Guided
£ 590 627 . s = 510 us Dropout and
S 5 0.5 NI O0 . Graph NN perform
E 100.0 98.9 E 100.0 924 98.1 better, but not
£ 100 - L 88.1 2O 118 bus g 100 - ' ' - 118 bus much better
i 42.3 347 aat 37.7 36.8
SN SN —  mall
Un-congested Congested Un-congested Congested

Metric: Recall (True Positive Rate) ; Recall=100%: NN has classified correctly all data points belonging to a class
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What would you do to improve the NN performance?

« We need better databases!

- And better methods to generate these databases fast and with information-rich content!

« Some first efforts from our side:

F.Thams, A. Venzke, R. Eriksson, S. Chatzivasileiadis. Efficient Database Generation for Data-Driven Security
Assessment of Power Systems. /EEE Transactions on Power Systems, vol 35, no. 1, pp. 30-41, Jan.2020
[.pdf | Databases | IEEEXplore]

Bastien Giraud, Lola Charles, Agnes Marjorie Nakiganda, Johanna Vorwerk, Spyros Chatzivasileiadis, A
Dataset Generation Toolbox for Dynamic Security Assessment: On the Role of the Security Open-source toolbox!

Boundary, IREP 2025, https://arxiv.org/abs/2501.09513
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Which method you think is the fastest ?
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DTU Wind

Evaluation time
B DCPF DC Power Flow vs
e ACPF AC Power Flow vs
029292 GDNN Guided Droupout vs
=i PI-EVGNN Physics-Informed Graph Neural Network
104 _; . Logarithmic Axis!
wn _ Neural Networks
2102 = 100-400 times faster
O ] than AC and DC
= i Power Flow
~ 10? E
E « NNs need 1.5 minutes to assess
101 o J— 100,000 scenarios

« AC/DC Power Flow need 5 hours
to assess 100,000 scenarios

24 bus

7 August 2025
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What happens if we include the training time?
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“ [ J [ J [ J [ ] [ J [ J
= Computation Time including NN training
: - : - Logarithmic Axis!! Bar length
BN Dataset generation time [l Test time not proportional to time
B Train time Break-even point
10° = *2ISK . Forthelarger systems, it
. . ‘EEE = DCPF appears that the break-even
- ':‘EEE et ACPF point |§ at approx. 500,000
@ g o :’:EEE % CDNN scenarios
k= 10 E P:CEEE msiaan PI-EVGNN — For more than 500,000
© ] e :O:EEE scenarios the NNs are
= ] i R RIdss! faster
- ; RS ge ==l x No. of scenarios
103 = | R
- E >:OEEE . Considering that we talked
] i :::EEE about 700 billion scenarios

(118-bus, N-3 cases), then

6 bus 24 bus 57 bus 118 bus NNs appear very promising
for screening
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Conclusions

- Power systems need Trustworthy Al!

i

- Graph-Aware Neural Networks are a promising option to screen a vast number of N-k
contingences (hundreds of millions)

— Can capture topology changes

— Can be 100x-400x faster in their evaluation (1.5 minutes instead of 5 hours for 100,000
scenarios)

— Much better performance than DC Power Flow

. Including training time, the break-even point with conventional methods appears to be at over
500,000 scenarios (57-bus, 118-bus)

— Considering that a moderate assessment of N-3 contingencies in the 118-bus system might
require 700 billion scenarios, the break-even point is low

- But: The screening performance still needs to be improved. A lot of R&D potential in:
— Efficient and information-rich database generation for NN training
— Improved NN training, e.g. design of input and output vectors, NN structures
— Inclusion of Physics-informed terms or not
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(Physics-Informed) Graph Neural
Networks for Fast N-k Security
Assessment

--End

'''''''''
------

Agnes Nakiganda, Spyros Chatzivasileiadis, Graph Neural Networks for Fast Contingency Analysis
of Power Systems, 2025. Online https://arxiv.org/abs/2310.04213 o
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Conclude and Discuss
--Begin

European Research Council

Established by the European Commission
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== Classification of Verification Methods
{ Classification of
Correctness Verification Methods

roooo- e - }
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. | |
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coming soon! |
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P.Ellinas, I. Karampinis, I. Ventura-Nadal, R. Nellikkath, J. Vorwerk, S. Chatzivasileiadis, Physics-Informed
Machine Learning for Power System Dynamics: A Framework Incorporating Trustworthiness, Sustainable
Energy, Grids and Networks, Elsevier, 2025. https://doi.org/10.1016/].segan.2025.101818
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Gradient
Attack Method

Sample-
Based Metrics
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Trustworthy Al for Power Systems: Vision

i

Al Testing and Experimentation Facility for Energy

. Establish a platform that verifies Al tools and certifies that they
comply with power system safety specifications

Y& Horizon Europe Y

Al-EFFECT EU project
Start: 1st October 2024

Participants: EPRI (Lead), DTU, TU Delft, Univ. Porto, BEOF,
TenneT, ENEL, and others

Al Standards: Create Standards for Al tools in Energy

Minimizing Worst-Case Violations of
Neural Networks

Rahul Nellikkath, Student Member, IEEE, Spyros Chatzivasileiadis, Senior Member, IEEE

Design a Neural Network Training Algorithm that
simulta neously delivers gua ra ntees of the Worst_case NN aci—Machine learning (ML) algorithms are remarkably  fast surogate functions in place of intractable cor

approximating complex 1 Most  bi-level optimization problems to make them cor

ining processes, however, are designed to deliver ML o, Gh1e [11], These developments have led re

ith good average performance, but do not offer any B ) s R
performa nce ces about their worst-case estimation error. For safety- [0cus on the development of “d':“"‘:c_d ML archi
systems such as power systems, this places a major barrier especially neural networks (NN), with improve

r adoption. So far, approaches could determine the worst- accuracy for power system applications. One of
lations of only frained ML algorithms. To the best of our

Y . . f. . o Ige, this is the first paper to introduce a neural network ing developments amons them ]\ for cx'.dmp].c.
- Example: “"Neural Network Training finished. ACcuracy 99.2%. b s peer o s s st stvok o Neurt Networs (18N wich
iance and minimum worst-case vielations. Using the physical equations governing the power flow inta

Worst-case violation of critical constraints: 10%.” o R O s s o LT TR —
R.Nellikkath, S. Chatzivasileiadis, Minimizing
worst-case violations for neural networks,
https://arxiv.org/abs/2212.10930
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Some Final Thoughts

- Ifwe want to accelerate processes by 10x-100x-
1000x we need to think differently

— Conventional methods reach their limits (?)

— Could Machine Learning become the disruptive
technology?

« Al Needs OR = Neural Network Verification is an
optimization problem. Can we address its
challenges?

- If yes, we remove barriers for a wide range of
safety-critical applications

- Power systems, robots, self-driving cars, control of
critical infrastructure, and many others

DTU Wind
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Some Final Thoughts . Canwe model the ground truth? If yes, use it!
— Physics-Informed Neural Networks (PINNS)

— Sampling Beyond Statistics
- Ifwe want to accelerate processes by 10x-100x- PINg BeY

1000x we need to think differently — Neural Network Training with Worst-Case

: e Performance Guarantees
— Conventional methods reach their limits (?)

— Could Machine Learning become the disruptive . , ,
technology? « PINNSim: A Simulator based on Physics Informed

Neural Networks for Power System Dynamics

- D t dasingle NN for the whol bl
. Al Needs OR = Neural Network Verification is an onotneedasingle NINTor the whole probiem

optimization problem. Can we address its - L_et s work mth I._|brar|es of Neural Networks”,
challenges? similar to “Libraries of Models”
_ If yes, we remove barriers for a wide range of — A PINN-based simulator can be 10x-100x faster for
safety-critical applications power system dynamics
- Power systems, robots, self-driving cars, control of i
critical infrastructure, and many others Major Challenges

1.  SCALABILITY
2. TOPOLOGY
3. Howdo we take advantage of GenAl?

7 August 2025
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Open-source Toolboxes

1. Generate your own training datasets!
GitHub/bastiengiraud/DSA-learn

GitHub

i

2. Train your own Physics-Informed Neural Networks!
GitHub/radiakos/PowerPINN

3. Play witha PINN for Power System Dynamics!
Google Colab PINN Playground
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Thank you!

P Spyros Chatzivasileiadis

Professor
www.chatziva.com
spchatz@dtu.dk
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