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Why Consider Uncertainty?
Development of redispatch measures in German
transmission grid (2016: 31.5 % RES)

Source: Bundesnetzagentur
Source: AWEA

) New tools necessary for power system operation of AC grids under
uncertainty which are able to:

� anticipate forecast errors to maintain a secure system operation

� define a-priori suitable corrective control policies
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Why Convex Relaxations?

� AC optimal power flow problem
non-linear & non-convex

� No guarantee obtained solution
is global optimum
� Distance to global optimum

cannot be specified (cost)

� Semidefinite relaxation transforms
AC-OPF to convex semi-definite
program (SDP) x

Cost
f(x)

~f1(x)

~f2(x)

) Under certain conditions, obtained solution is the global optimum to
the original AC-OPF (Zero relaxation gap in work by Lavaei and Low1)

1Javad Lavaei and Steven H Low. “Zero duality gap in optimal power flow problem”. In:
IEEE Transactions on Power Systems 27.1 (2012), pp. 92–107
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Related Work

To address uncertainty, include chance constraints in the optimal power
ow (OPF) problem, which de�ne a maximum probability of violation.

To achieve a tractable formulation, related works in literature use

� an a-priori computed linearization of the power flow equations
(e.g. DC-OPF)

� iteratively linearize the power flow equations depending on operating
point

5 DTU Electrical Engineering Convex Relaxations of Chance Constrained AC-OPF 3/5/2018



Linear vs. Iterative Chance Constrained OPF

Linear OPF

� Pros:

� Faster
� Scalable

� Cons:

� No losses
� No reactive power flows
� Approximate

Iterative non-linear OPF

� Pros:

� Losses and reactive power
considered
� Scalable

� Cons:

� Non-convex ! might be
trapped in a local minimum
� Convergence

1Vrakopoulou, Margellos, Lygeros,
Andersson, TPWRS 2013
2Bienstock, Chertkov, Harnett, SIAM
Review 2014
3Lubin, Dvorkin, Backhaus, TPWRS, 2016

1Zhang, Li, TPWRS, 2011
2Schmidli, Roald, Chatzivasileiadis,
Andersson, PES GM 2016
3Roald, Andersson, TPWRS 2017
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Scope of Our Work

� Integrate the chance constraints in the semidefinite relaxation of the
AC-OPF for meshed transmission networks

� Develop a tractable OPF formulation which includes uncertainty in power
injections and which allows to

� include the full AC-OPF formulation (consider large uncertainty
deviations)
� corrective control policies related to active and reactive power, and

voltage
� provide (near-)global optimality guarantees

� First steps taken in Vrakopoulou et al.2

2Maria Vrakopoulou et al. “Probabilistic security-constrained AC optimal power flow”. In:
IEEE PowerTech. Grenoble, France, 2012
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Optimal Power Flow Formulation

Introducing the variable transformation of complex bus voltages V :

X := [<fV g=fV g]T

W = XXT

) The 2nbus - dimensional vector X is transformed to
2nbus � 2nbus - dimensional matrix W
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Optimal Power Flow Formulation
. . . for each node k and line lm:

Minimize Generation Cost
X
k2G

fck2(TrfYkWg+ PDk
)2 +

ck1(TrfYkWg+ PDk
) + ck0g

s. t. Active Power Balance Pmin
k � TrfYkWg � Pmax

k

Reactive Power Balance Qmin
k � Trf�YkWg � Qmax

k

Bus Voltages (V min
k )2 � TrfMkWg � (V max

k )2

Active Branch Flow � Pmax
lm � TrfYlmWg � Pmax

lm

Apparent Branch Flow TrfYlmWg2 + Trf�YlmWg2 � (Smax
lm )2

Decomposition W = [<fV g=fV g]T| {z }
X

[<fV g=fV g]| {z }
XT

Matrices Yk, �Yk, Ylm and �Ylm are auxiliary variables resulting from
the admittance matrix Y of the system.
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Optimal Power Flow Formulation
. . . for each node k and line lm:

Minimize Generation Cost
X
k2G

fck2(TrfYkWg+ PDk
)2 +

ck1(TrfYkWg+ PDk
) + ck0g

s. t. Active Power Balance Pmin
k � TrfYkWg � Pmax

k

Reactive Power Balance Qmin
k � Trf�YkWg � Qmax

k

Bus Voltages (V min
k )2 � TrfMkWg � (V max

k )2

Active Branch Flow � Pmax
lm � TrfYlmWg � Pmax

lm

Apparent Branch Flow TrfYlmWg2 + Trf�YlmWg2 � (Smax
lm )2

Semi-De�niteness of W W � 0

Rank Constraint rank(W ) = 1

Matrices Yk, �Yk, Ylm and �Ylm are auxiliary variables resulting from
the admittance matrix Y of the system.
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Optimal Power Flow Formulation
. . . for each node k and line lm:

Minimize Generation Cost
X
k2G

fck2(TrfYkWg+ PDk
)2 +

ck1(TrfYkWg+ PDk
) + ck0g

s. t. Active Power Balance Pmin
k � TrfYkWg � Pmax

k

Reactive Power Balance Qmin
k � Trf�YkWg � Qmax

k

Bus Voltages (V min
k )2 � TrfMkWg � (V max

k )2

Active Branch Flow � Pmax
lm � TrfYlmWg � Pmax

lm

Apparent Branch Flow TrfYlmWg2 + Trf�YlmWg2 � (Smax
lm )2

Semi-De�niteness of W W � 0

Rank Constraint (((((((hhhhhhhrank(W ) = 1 ) Convex Relaxation

) Lavaei and Low show that for the common IEEE test systems, the
relaxation achieves zero relaxation gap, i.e. it is exact.
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Optimal Power Flow Formulation
. . . for each node k and line lm:

Minimize Generation Cost
X
k2G

fck2(TrfYkWg+ PDk
)2 +

ck1(TrfYkWg+ PDk
) + ck0g

s. t. Active Power Balance Pmin
k � TrfYkWg � Pmax

k

Reactive Power Balance Qmin
k � Trf�YkWg � Qmax

k

Bus Voltages (V min
k )2 � TrfMkWg � (V max

k )2

Active Branch Flow � Pmax
lm � TrfYlmWg � Pmax

lm

Apparent Branch Flow TrfYlmWg2 + Trf�YlmWg2 � (Smax
lm )2

Semi-De�niteness of W W � 0

) Note that most constraints are linear in W ; generation cost and
apparent branch ow are reformulated as SOC constraints; positive
semi-de�niteness of W .
9 DTU Electrical Engineering Convex Relaxations of Chance Constrained AC-OPF 3/5/2018



Including Chance Constraints

� Include chance constraints in OPF:
Constraints should be satisfied for a
defined probability 1� �, given an
underlying distribution of the uncertainty

� Include wind in-feeds with forecast value
P fW and forecast error �: PWi = P fWi

� �i PWi

Probability
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Chance Constrained AC-OPF Formulation

. . . for each node k and line lm:

Minimize Generation Cost
X
k2G

fck2(TrfYkW0g+ PDk
)2+

ck1(TrfYkW0g+ PDk
) + ck0g

s. t. OPF constraints for W = W0

Pf Active Power Balance Pmin
k � TrfYkW (�)g � Pmax

k

Reactive Power Balance Qmin
k � Trf�YkW (�)g � Qmax

k

Bus Voltages (V min
k )2 � TrfMkW (�)g � (V max

k )2

Active Branch Flow � Pmax
lm � TrfYlmW (�)g � Pmax

lm

Apparent Branch Flow TrfYlmW (�)g2 + Trf�YlmW (�)g2 � (Smax
lm )2

Semi-De�niteness of W W (�) � 0 g � 1� �

W0: Forecasted system state
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Including Chance Constraints

� System state W (�) is a function of forecast errors �

� The resulting chance constrained problem is infinite-dimensional problem
) Chance constraints are intractable!

How can we achieve tractability?

� How to model the forecast error?
) Either using scenario-based methods or assuming probability
distributions

� How to approximate system state W (�) as a function of forecast error?
) Piecewise affine approximation
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Randomized and Robust Optimization

� No assumptions on the underlying distribution of the forecast errors.

� Then, we have to take at least Ns samples to enclose 1� � of the
uncertainty set with confidence parameter �

Ns �
1

1� �
e

e� 1
(ln

1

�
+ 2nW � 1)

where e is Euler’s number and nW the number of wind farms.3

3Maria Vrakopoulou et al. “Probabilistic security-constrained AC optimal power flow”. In:
IEEE PowerTech. Grenoble, France, 2012
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Randomized and Robust Optimization

PW1

PW2

P fW1
+ �

1
P fW1

P fW1
+ �1

P fW2

P fW2

+�2

P fW2

+�
2

W0

� The minimum and maximum bounds on the forecast errors �i 2 [�
i
; �i]

are retrieved by a simple sorting operation among the Ns scenarios:
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Randomized and Robust Optimization

PW1

PW2

P fW1
+ �

1
P fW1

P fW1
+ �1

P fW2

P fW2

+�2

P fW2

+�
2

W0

W3 W2

W4 W1

�We use a piecewise affine policy which interpolates system state between
forecasted system state W0 and vertices of the uncertainty set W1�4.

� That is, we compute the exact AC-OPF solution at each of the vertices
and at the forecasted system state.
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Randomized and Robust Optimization

PW1

PW2

P fW1
+ �

1
P fW1

P fW1
+ �1

P fW2

P fW2

+�2

P fW2

+�
2

W0

W3 W2

W4 W1

� As result of piecewise affine approximation, chance constraints are
convex.

� Using robust optimization3, it is sufficient to enforce chance constraints
at the vertices of the uncertainty set.
3Kostas Margellos, Paul Goulart, and John Lygeros. “On the road between robust optimization

and the scenario approach for chance constrained optimization problems”. In: IEEE Transactions
on Automatic Control 59.8 (2014), pp. 2258–2263
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Gaussian Uncertainty Set

� Here, we consider the individual (not joint) chance constraint violation
probability.

� Assuming that the wind forecast errors are Gaussian distributed and
possibly correlated yields:

PW1

PW2

P fW1

P fW2

W0
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Analytical Reformulation for Gaussian Distributions

PW1

PW2

P f
W1

P f
W2

W0

W1

W2

W3

W4

� We use a piecewise a�ne policy which interpolates system state between
forecasted system stateW0 and end-point of the ellipsoid axes of the
uncertainty setW1� 4.
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Analytical Reformulation for Gaussian Distributions

PW1

PW2

P f
W1

P f
W2

W0

W1

W2

W3

W4

� Using results from chance-constrained optimization4, an analytical
reformulation of the linear chance constraints as SOC constraints can be
applied.

� The semide�nite and SOC chance constraints are approximated.

4Arkadi Nemirovski. \On safe tractable approximations of chance constraints". In: European
Journal of Operational Research219.3 (2012), pp. 707{718
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Corrective Control Policies
� To link forecasted system stateW0 with nW matrix Wi , de�ne generator

participation factorsd:

PW i

PGk

dk (1 +  2)

dk (1 +  1)

P f
W i

P f
W i

+ � i P f
W i

� � i

PGk (� )

1

1

� PGk (� )

=

� PW i dk (1 +  i )

 i accounts for non-
linear change in losses

) To obtain zero relaxation gap, loss penalty with weight� in objective
necessary :

min. Gen. Cost+ �
P nW

i =1  i

� Corrective control of generator voltage set-points (AVR), reactive power
capabilities of wind farms (power factor 0.95 inductive to 0.95 capacitive)
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Simulation Setup

� Implemented in optimization toolbox JuMP/Julia and solver MOSEK V8

� Choose a violation limit of� = 5%

� Heuristic for zero relaxation gap5: Ratio of 2nd to 3rd eigenvalue� � 105

� Near-global optimality guarantee6: � opt = f 0
f pen

� 100%

5Daniel K Molzahn et al. \Implementation of a large-scale optimal power ow solver based on
semide�nite programming". In: IEEE Transactions on Power Systems28.4 (2013),
pp. 3987{3998

6Ramtin Madani, Somayeh Sojoudi, and Javad Lavaei. \Convex relaxation for optimal power
ow problem: Mesh networks". In: IEEE Transactions on Power Systems30.1 (2015),
pp. 199{211
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Investigating Relaxation Gap
... for a IEEE 24 bus test system with 2 wind farms and rectangular
uncertainty set.
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105
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�

� (W0 )
� (W1 )
� (W2 )
� (W3 )
� (W4 )
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�104
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Gen.

cost
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-200
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C
os

t
($

/h
)

Penalty

term

) Near-global optimality guarantee of99:74%.
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IEEE 118 bus test case

� Two wind farms with maximum rated power of 300 and 600 MW

� Using realistic forecast wind data from Danish wind farms

� Four designated generators compensate wind power deviations

� We compare our approaches to

� AC-OPF without considering chance constraints
� iterative chance constrained AC-OPF assuming Gaussian distributions

from Schmidli et al.7

� chance constrained DC-OPF for robust uncertainty set from Jabr8

� We use a Monte Carlo Analysis with 10'000 samples: Run MATPOWER
AC power ows with control set-points from the respective approaches
and evaluate empirical violation probability. Compare Cost of Uncertainty.
7Jeremias Schmidli et al. \Stochastic AC optimal power ow with approximate

chance-constraints". In: IEEE Power and Energy Society General Meeting. Boston, US, 2016
8Rabih A Jabr, Sami Karaki, and Joe Akl Korbane. \Robust multi-period OPF with storage

and renewables". In: IEEE Transactions on Power Systems30.5 (2015), pp. 2790{2799
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Forecast Data
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0
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Construction of Uncertainty Sets
Comparison of robust and Gaussian uncertainty set obtained from the
Ns = 314 scenarios sampled for hour 4:

0:3 0:4 0:5 0:6 0:7 0:8 0:9 1

0:4

0:6

0:8

1

PW 1 (p.u.)

P
W

2
(p

.u
.)

Rectangular
Gaussian
Samples
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Results - Monte Carlo Analysis

Empirical chance constraint violation probability using 10'000 samples
and MATPOWER AC power ows (target 5%):

Time step (h) 1 2 3 4 5

Type of chance constraint: Active generator limit (%)

AC-OPF w/o CC 46.4 48.8 45.9 45.5 40.9

CC-DC-OPF 34.3 38.6 30.1 14.5 2.0

CC-AC-OPF (Robust) 0.0 0.0 0.0 0.0 0.0

CC-AC-OPF (Gauss) 0.0 0.2 0.4 2.3 0.7

Iterative CC-AC-OPF 2.9 4.1 3.0 3.3 5.7
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Results - Monte Carlo Analysis

Empirical chance constraint violation probability using 10'000 samples
and MATPOWER AC power ows (target 5%):

Time step (h) 1 2 3 4 5

Type of chance constraint: Active power line limit (%)

AC-OPF w/o CC 17.7 18.8 14.9 32.5 46.5

CC-DC-OPF 0.0 0.0 0.0 2.8 0.0

CC-AC-OPF (Robust) 0.0 0.0 0.0 0.0 0.0

CC-AC-OPF (Gauss) 4.6 3.7 0.9 2.6 5.8

Iterative CC-AC-OPF 1.6 2.0 3.6 4.2 5.3
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Results - Monte Carlo Analysis

Empirical chance constraint violation probability using 10'000 samples
and MATPOWER AC power ows (target 5%):

Time step (h) 1 2 3 4 5

Type of chance constraint: Bus voltages (%)

AC-OPF w/o CC 0.0 0.1 0.2 1.0 4.3

CC-DC-OPF 100.0 100.0 100.0 100.0 100.0

CC-AC-OPF (Robust) 0.0 0.0 0.0 0.0 0.0

CC-AC-OPF (Gauss) 0.7 1.9 4.3 7.2 7.6

Iterative CC-AC-OPF 0.0 0.0 0.0 0.0 0.0
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Results - Cost of Uncertainty

Cost of chance-constrained approaches in relation to AC-OPF without
considering uncertainty:

Time step (h) 1 2 3 4 5

Cost of Uncertainty (%)

CC-AC-OPF (Rect) (%) 0.77 0.74 0.76 0.92 1.56

CC-AC-OPF (Gauss) (%) 0.52 0.46 0.47 0.49 0.51

Iterative CC-AC-OPF [9] (%) 0.52 0.47 0.47 0.49 0.52

CC-DC-OPF [3] (%) -2.78 -2.83 -2.82 -2.67 -2.17
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Results - Key �ndings for IEEE 118 bus test case

� Not considering chance constraints in the AC-OPF leads to violation of
active line and generator limits.

� The DC-OPF formulation violates both voltage and active generator
limits.

� Both AC-OPF formulations based on the assumption of Gaussian
distribution do not achieve compliance with the chance constraints in the
out-of-sample analysis for all considered time steps. In-sample chance
constraints are ful�lled.

� The AC-OPF formulation based on robust optimization achieves
compliance with chance constraints but at higher cost of uncertainty.

� We choose a penalty term of� = 100 and achieve a near-global
optimality > 99:99% for the considered time steps.
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Considering N-1 Security Constraints

� N-1 security: An outage of any single
component or line does not lead to a
violation of system constraints.

� We focus on line outages, i.e. change
in admittance matrix. Source: Finanical Review

� We extend the formulation based on randomized and robust optimization
to account for line outages.

� Similar to how the forecasted system state is linked to vertices of
uncertainty set, we link forecasted intact system state to outaged states
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Randomized and Robust Optimization
... for the example of two wind farms and one considered outage:

for intact system state for outaged system state

PW1

PW2

P f
W1

+ �
1

P f
W1

P f
W1

+ � 1

P f
W2

P f
W2

+ � 2

P f
W2

+ �
2

W 0
0

W 0
3 W 0

2

W 0
4 W 0

1

PW1

PW2

P f
W1

+ �
1

P f
W1

P f
W1

+ � 1

P f
W2

P f
W2

+ � 2

P f
W2

+ �
2

W 1
0

W 1
3 W 1

2

W 1
4 W 1

1

� Instead ofWv we haveW c
v for each contingencyc and vertexv!

� Challenge: obtain zero relaxation gap + scalability
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Investigating Relaxation Gap

... for a IEEE 24 bus system with 3 wind farms and 2 outages, i.e. 27
W matrices:
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) Near-global optimality guarantee is 99.77%.
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Investigating Relaxation Gap

Systematic procedure to achieve zero relaxation gap:

1 Solve OPF with no penalty term. If we obtain rank-1 solutions for all
included entries, we obtain zero relaxation gap and terminate.

2 Otherwise, we increase penalty weights for higher rank matricesW by a
de�ned step-size� � and resolve OPF.
) Instead of�

P
c;v  c

v we use
P

c;v � c
v  c

v
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) Near-global optimality guarantee is 99.77%.
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Scalability

� We apply a chordal decomposition of the semide�nite constraint on
matrix variablesW . Enforce the semide�nite constraint only for the
maximum cliques of graph describing power grid.

� Iterative solution algorithm:

1 We initialize the algorithm by solving the OPF problem without
chance and security constraints.

2 MATPOWER AC power ows for each possible vertex and outage
combination and evaluate the constraint violations. In case no
violations occur, we terminate.

3 Otherwise, we apply a constraint �ltering: We identify the vertex and
outage combinations which for at least one constraint dominate all
other combinations in terms of magnitude of constraint violation9.
Add dominating to OPF, solve OPF and return to 2).

9Florin Capitanescu et al. \Contingency �ltering techniques for preventive security-constrained
optimal power ow". In: IEEE Transactions on Power Systems22.4 (2007), pp. 1690{1697
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