
Robust Frequency Control for
Varying Inertia Power Systems

George S. Misyris, Student Member, IEEE, Spyros Chatzivasileiadis, Senior Member, IEEE,
and Tilman Weckesser, Member, IEEE,

Abstract—Increased penetration of fluctuating Renewable En-
ergy Sources (RES) adds a significant uncertainty in the dynamic
behavior of the power system. Varying power infeed from RES
significantly affects the number of conventional generators to be
dispatched at any time instant. As a result, system parameters,
such as inertia and damping can no longer be considered
constants, but instead they obtain a time-varying profile. In
this paper, a robust frequency control scheme is introduced to
account for the time-varying system inertia and damping under
increased RES penetration. The proposed method is based on
an H∞ loop-shaping design procedure, and it guarantees good
frequency response for varying levels of inertia and damping.
After presenting the impact of varying system parameters to the
system dynamic behavior, the design method for the proposed
controller is presented, and its performance in case studies is
demonstrated.

Index Terms—frequency dynamics analysis, H∞ loop-shaping
design, robust control.

I. INTRODUCTION

Increased penetration from Renewable Energy Sources
(RES) impacts the dynamic behavior of the power system and
may jeopardize its stability. In the absence of conventional
generators, the Rate Of Change Of Frequency (ROCOF)
becomes higher due to the lower inertia, while the frequency
nadir deteriorates [1]. Furthermore, conventional generators
can assist towards the damping of electromechanical oscil-
lations, and can provide services such as automatic voltage
regulation and frequency control [2]. Consequently, transmis-
sion system operators face increasing challenges to maintain
the security and stability of the electricity network [3].

Generally, RESs do not inherently contribute to frequency
control, since they are usually operated in a maximum power
point tracking mode [4]. Moreover, varying weather condi-
tions affect RES generation levels and, hence, the number
of committed conventional generators is changing over time.
Consequently, total inertia level, provided by rotating mass,
and the damping of the system, provided by e.g. Power System
Stabilizers (PSS) and damper windings, are varying in time.
To ensure stable grid operation, the frequency control needs to
be designed to perform well for a range of system conditions,
where the system inertia and damping levels are uncertain. In
control theory, an approach for designing controllers, explicitly
dealing with uncertainty, is robust control.
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Several methods have been developed for enhancing stabil-
ity under consideration of low system inertia and damping.
The authors of [5]–[7] address the problem by proposing an
optimization that informs system operators how to choose
optimal levels of inertia with respect to damping of power
system oscillations, while ensuring admissible transient be-
havior after a large disturbance. In [8], the authors propose
an explicit model predictive control, which allows to directly
incorporate operational constraints of power system units
(ramp-rate, power rating, energy constraints) to achieve real-
time tractability while keeping the online computation effort
low. In [9], the authors propose an extended control loop
based on the generator emulation control concept to provide
inertia by using the stored energy in the dc-link capacitors of
VSC-HVDC links. Moreover, researchers have been seeking
different ways to control power electronic converters in power
systems to enhance system stability [10]. One approach is
to embed the dynamics and behavior of conventional syn-
chronous machines into power electronic converters as Virtual
Synchronous Machines (VSMs) [11], [12].

To implement this approach structured controllers are added
to the control circuits of the converters. Structured controllers,
such as PID, lead-lag controllers, etc. are preferred due to
their properties, since they are easy to implement and re-tune
whenever performance or system properties change. However,
the uncertain RES power infeed makes the tuning procedure
of the controllers challenging. Several methods have been
proposed to increase robustness of structured controllers [13].
Among those methods, the H∞ loop shaping methodology
introduced in [14] is a good technique for combining desirable
properties such as tracking performance, disturbance rejection,
robustness to model uncertainty.

This paper first investigates the impact of time-varying
inertia and damping on the frequency dynamics of the system.
An analysis is conducted using tools from control system
theory on how the uncertainty of those parameters affect
frequency dynamics. Then, a structured robust control design
is proposed to increase the security of the system operation
under uncertainty. Reducing ROCOF and maximum frequency
deviation is associated with inertia response and primary
frequency control [8]. Most existing converter and generation
systems use proportional control – in the form of droop control
– to stabilize frequency right after a disturbance. Therefore, in
this paper the focus is on proportional control for the robust
control design. In the analysis, the frequency dynamics are
represented by a second order model.978-1-5386-4505-5/18/$31.00 c©2018 IEEE



Accounting for the uncertainty of system dynamics due to
the fluctuation of system inertia, the contribution of this paper
is to propose a procedure for designing Multi-Input-Multi-
Output (MIMO) controllers by exploiting the efficiency of the
H∞ loop shaping in synthesizing optimal and robust structured
controllers. The outcome of the proposed design will be a state
feedback controller that improves the power oscillation damp-
ing and decreases the ROCOF and the frequency overshoot
for a wide range of system inertia and damping levels.

This paper is organized as follows: Section II describes
the power system model considered in the control design
procedure. Section III presents an analysis of the impact of
varying inertia on the frequency dynamics of the power sys-
tem. Section IV presents the procedure for deriving the robust
controller. Section V demonstrates robust performance of the
implemented controller. Conclusions are drawn in Section VI.

II. POWER SYSTEM MODELING

A. Dynamic generator model
A commonly used model to assess dynamic phenomena in

power systems is the swing equation, see Eq. (1). It relates the
change of rotor speed of a machine i to a torque imbalance.

∆ω̇i =
1

2Hi
[∆Tmi −∆Tei ], (1)

∆δ̇i = ω0∆ωi, (2)

where i refers to the number of the bus, ∆ωi is the per unit
speed deviation, Hi is the inertia constant of the machine
[ MW·s

MVA ], ∆Tei is the electrical torque deviation [p.u.] and
∆Tmi is the deviation of the mechanical torque applied to the
machine [p.u.]. ∆δi is the rotor angle deviation in electrical
radians and ω0 is the base rotor electrical speed in radians
per second. (1) and (2) formulate the equations of motion
linearized around an operating point.

The change in electrical torque (∆Tei ) following a distur-
bance can be resolved into two components, the synchroniz-
ing torque component (∆TSi

) and the damping component
(∆TDi

). (3) describes this change [2]:

∆Tei = ∆TSi
+ ∆TDi

= KSi
∆δi +KDi

∆ωi, (3)

where ∆TSi
is in phase with ∆δi, and KSi

is the synchroniz-
ing torque coefficient; and ∆TDi

is in phase with ∆ωi, and
KDi

is the damping torque coefficient. Synchronizing torque
depicts the non-linear nature of dynamics of interconnected
generators. Insufficient synchronizing torque can lead to tran-
sient instability. On the other hand, lack of sufficient damping
torque leads to oscillatory instability.

Although the swing equation is a simplified representation
of power system dynamics, it can model adequately well
first swing instability [2], [15]. Since the goal of this paper
is to limit the maximum ROCOF and maximum frequency
deviation, which usually appear during the first swing, the
swing equation can represent sufficiently well the generator
dynamics. Beside that, this modeling approach has been
widely used in literature as a first step to gain insights and

develop control approaches for a large number of power
system stability problems.

In a “conventional” grid, synchronous generators ensure
system stability, supported by Automatic Voltage Regulators
(AVR) and PSS, which affect the magnitude of KSi and KDi .
However, with high penetration of fluctuating RES, the number
of committed synchronous generators vary, and with them the
number of AVR and PSS, operating at each time instant. As
a result, KSi

and KDi
vary with time. To counter the varying

nature of KSi
and KDi

, new robust control approaches need
to be developed.

B. State Space Model
Taking into consideration (1)-(3), the state space representa-

tion of the dynamics at each generator or aggregated generator
unit is given by (4). This state space representation is of the
form ẋ = Ax+Bu:[

˙∆ωi

∆̇δi

]
︸ ︷︷ ︸

ẋi

=

[
−KDi

2Hi
−KSi

2Hi

ω0 0

]
︸ ︷︷ ︸

Ai

[
∆ωi

∆δi

]
︸ ︷︷ ︸

xi

+

[
1

2Hi

0

]
︸ ︷︷ ︸

Bi

∆Tmi︸ ︷︷ ︸
ui

(4)

where xi is a vector containing the system state variables, Ai

is a matrix termed as the state matrix of the system, Bi is the
input matrix and ui contains the system input variables. The
order of Ai matrix determines the number of modes of the
system and the system eigenvalue properties.

The elements of the state matrix Ai are dependent on the
system parameters KDi

, KSi
, Hi and the initial operating con-

dition. The coefficients KSi
and KDi

can be calculated given
an initial operating point based on (5) and (6), respectively.

KSi =
∑
j∈Ωi

ViVjbijcos(δij) (5)

KDi = cdi (6)

where Vi is the bus voltage magnitude, bij is the susceptance
between i and j, δij is the angle difference between i and j
nodes, cdi is a constant value that represents the magnitude
of the damping torque coefficient at each generator bus and
Ωp the set of all nodes adjacent to node p. Power losses are
neglected.

C. Multi-machine system
In (4), ∆ωi represents the rotor speed. In a multi-machine

system, the frequency measured at a particular bus is a function
of the rotor speeds of all generators. In the following, it is
assumed that larger regions of a power system are aggregated
and represented by an equivalent machine. The dynamics of
this equivalent machine can be described by (4) and the model
parameters are determined through aggregation of the indi-
vidual generators in the region. Consequently, the parameters
Hi, KDi

and KSi
of the equivalent machine vary depending

on the generation dispatch and power infeed of RES in the
region. In the proposed modeling approach, the rotor speed
dynamic response of the equivalent machine corresponds to the
frequency dynamic response in the region. The overall aim is
to develop a robust controller which improves the rotor speed
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Fig. 1. ∆ω impulse response at different inertia levels

dynamic response of that equivalent machine, and, hence, the
frequency response of the aggregated region. Therefore, in
the rest of this paper, the terms rotor speed of the equivalent
machine and frequency are used interchangeably.

For the observation of the frequency dynamics in multi-
machine systems, the focus is on electromechanical oscillatory
modes, which indicate how the generators oscillate against
each other [2]. The second order model, defined by (4)-(6),
can be used to describe the electromechanical oscillations
of each generator. The multi-machine system is linearized
over an equilibrium x0, using Taylor approximation [2]. The
connectivity between two buses i and j at an equilibrium, and
the LaPlacian of the network, are given by:

Pij = ViVjbijcos(δij), Lij =

{
−Pij , i 6= j
KSi

, i = j
(7)

where KSi
and Pij are given by (5) and (7), respectively. As-

suming a system with n buses, LN ∈ Rn×n. The parameters
of the system, such as inertia and damping, are collected in
matrix form and the states in vectors.

HN = diag(2H1, · · · , 2Hn), KN = diag(KD1 , · · · ,KDn) (8)

∆δN = [∆δ1, · · · ,∆δn]
T
, ∆ωN = [∆ω1, · · · ,∆ωn]

T (9)

where Hi is the inertia at each bus and KDi
is given by (6),

with HN ∈ Rn×n and KN ∈ Rn×n. The state vectors ∆δN

and ∆ωN include the deviation of generators’ rotor angles and
speeds of the system, with ∆δN ∈ Rn×n and ∆ωN ∈ Rn×n.

The input for the multi-machine system is the vector con-
taining the deviation of mechanical torque of each generator
and the output is a vector containing the angular velocity
deviation of each generator. The state space representation of
the open-loop transfer function is:{

ẋ = Asysx+Bsysu

y = Cx
(10)

Asys =

[
On×n ω0n×n

−H−1
N LN −H−1

N KN

]
, Bsys =

[
On×n

−H−1
N

]
(11)

x =
[
∆δN ∆ωN

]T
, u =

[
∆Tm1 , · · · ,∆Tmn

]
(12)

where x, Asys, Bsys and u are given by (11) and (12). On×n

and ω0n×n
are diagonal matrices, containing zero and ω0 in

their diagonal entries, respectively. C is a matrix mapping the
speed deviation of each generator or generator unit (∆ωi). The
transfer function G(s) of the open-loop system is:

G(s) =
Y (s)

U(s)
= C(sI −Asys)

−1Bsys (13)
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Fig. 2. Eigenvalues trajectory concerning the oscillatory mode of generator 3
(3-bus system, Section V), while reducing inertia level at bus 2 (ζ: Damping
Ratio)

III. ANALYSIS OF IMPACT OF VARYING INERTIA AND
DAMPING ON FREQUENCY DYNAMICS

A. Modal analysis

To quantify the effect of the varying system inertia and
damping, modal analysis, Bode gain and eigenvalue plots are
used to visualize the response of the examined system. For the
presented case study the following assumptions are made:

1) The voltage dynamics and the dynamics for reactive
power compensation are not included.

2) Under varying penetration of RES, the decrease rate of
system inertia (Hsys) is higher than the one of system
damping (KDsys

).

B. Sensitivity Analysis - Time varying parameters

For the sensitivity analysis, the inertia and damping param-
eters at generator bus 2 are varying. Similar results can be
extracted by varying the parameters at other other generator
buses. It is worth mentioning that, in the examined system
(Fig. 8), there are two oscillatory modes, one associated with
generators 1 and 3 and the other with generators 2 and 3.

Fig. 1 presents the impulse response of the frequency
deviation at a system node, where an equivalent machine is
connected. As it can be observed, the frequency overshoot
and ROCOF greatly depends on inertia levels: the lower the
inertia is, the higher the frequency deviation and ROCOF
become. This could also be explained by (1), where decreasing
system inertia results to higher rate of frequency deviation for
the same magnitude of torque imbalance. Moreover, decrease
of inertia levels leads to increased damping ratio. This can
be seen both in Figs. 1 and 2, where the trajectory of
the eigenvalues of electromechanical mode associated with
generators 2 and 3 for a 90% reduction of inertia level are
presented. As seen in Fig. 2, at the initial level of inertia the
eigenvalues indicate low damping ratio (red circles). While
decreasing the inertia level, the eigenvalues move further to
the left, which results to higher damping ratio.

In Fig. 3 the Bode plot of G2(s) = ∆ω2(s)
∆Tm2

(s) is illustrated.
To evaluate the system response, the rise-time, the overshoot
and the settling time parameters are used [16]. Considering
G2(s), the system rise-time is associated with the ROCOF and
the system overshoot with the maximum frequency deviation.
As shown in the figure, reducing system inertia leads to gain
amplification at higher frequencies and an increase of the
system bandwidth (also illustrated in Fig. 4), which results
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to shorter rise-time and higher overshoot [16] (also illustrated
in Fig. 1). In Fig. 4 the Bode plot of G32(s) = ∆ω3(s)

∆Tm2 (s) is
illustrated. As the inertia level decreases, the magnitude of
the transfer function becomes smaller around the frequency of
electromechanical modes (3.5-12 rad/s), which results to better
damping of the oscillatory mode associated with generators 2
and 3. As for the oscillatory mode of generators 1 and 3,
its damping ratio and frequency are insignificantly different,
therefore in terms of brevity the results are not depicted.

Fig. 5 presents the frequency response for different levels
of damping and inertia. Blue lines represent the case with
high inertia and red lines the case with the low inertia. As the
damping decreases, the gain becomes larger at the frequencies
of oscillatory modes and the system becomes undamped [16].
Moreover, it can be seen that the varying inertia affects the
frequency of the oscillatory modes. In particular, as inertia
level becomes lower, the frequency of the oscillatory modes
become higher. It is worth mentioning, however, that the
steady state gain (below 1 rad/s) remains almost constant
despite the varying inertia and damping.

Based on these observations, the goal in this paper is to
derive a robust control approach to compensate the impact of

damping and inertia (varying penetration of RES), while not
altering the steady-state behavior of the system.

IV. STRUCTURED ROBUST CONTROLLER

A. H∞ Loop shaping design

In [14] the authors proposed an H∞ design procedure,
in which the desired performance of the controller can be
specified by shaping the singular values of the nominal system
system G(s) using pre- and post-compensators W1(s) and
W2(s). The H∞ design procedure is applied for a PID
controller in [17], [18]. Since the focus is on tuning the gains
of a structured proportional controller (P-controller), the above
design procedure is adjusted. In this framework, the controller
K(s), see Fig. 6, is structured as:

K(s) = W1(s)−1KP(s) (14)

where W1 and W−1
1 are stable transfer matrices and KP is

the transfer matrix of the P-controller. The transfer matrix KP

is a diagonal matrix with the proportional gains as elements,
which correspond to the gains of each P controller of every bus
(KP = diag(kp1

, kp2
· · · kpn

), where n is the number of buses
considered in the system). This particular structure of Fig.
6 ensures that the final controller has the desired P-structure
since Kfinal=W1W1

−1KPW2 = KPW2 [17].
The input-output relationship of the closed-loop system, see

Fig. 6 is given by: [
z1

z2

]
︸︷︷︸

z

= Tzw(KP)

[
w1

w2

]
︸ ︷︷ ︸

w

(15)

Tzw(KP) =[
(I + W2GKP)−1W2GW1 (I + W2GKP)−1

−W−1
1 KP(I + W2GKP)−1W2GW1 −W−1

1 KP(I + W2GKP)−1

]
=
[

I

−W−1
1 KP

]
(I+W2GKP)−1 [W2GW1 I] (16)

where G(s) is the initial plant of the system. After determining
Tzw(KP) the objective is to find the K controller that satisfies
the following optimization problem:

minimize γ

subject to ||Tzw(KP)||∞ ≤ γ
(17)

After solving the optimization problem, described in (17), the
final controller is given by:

Kfinal(s) = KP(s)W2(s) (18)

which corresponds to a standard P controller in cascade with
the post-compensator W2(s).

In the following subsection the procedure of deriving the
weighting functions is presented. The minimal achievable
value of ||Tzw(KP)||∞ indicates that the closed-loop system is
bounded by a value of γ at all frequencies, which indicates the
robust performance of the closed loop system (Fig. 6) against
uncertainty. The values for the parameter γ range between 1
and 3 [13]. The closer to 1 is the value of γ the more robust is
the performance of the closed loop system. In case γ ≥ 3 the
W1 and W2 have to be adjusted until the condition (1 ≤ γ ≤ 3)
is satisfied [13].
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B. Weighting Functions
According to [13] and Fig. 6, W2 reflects the relative

importance of the outputs to be controlled being fed back to
controller and W1 contains the dynamic shaping such as an
integral action for low frequency performance and disturbance
attenuation. By this means W1 determines the gain at low and
W2 the gain at high frequencies.

The objective of the controller is determined based on the
results presented in Section III. As mentioned above and
depicted in Fig. 5, varying inertia affects the gain in the higher
frequencies and varying damping the gain at the frequencies of
electromechanical modes. Therefore, concerning the varying
inertia, it is desirable that the robust controller exposes the
characteristics of a low pass filter with a cut-off frequency
in the range of 15-20 rad/s. As for the varying damping, to
increase resilience to damping uncertainty, a bandstop filter is
required at the frequencies of oscillatory modes (2-15 rad/s).
Considering the above and the H∞ design procedure [17], pre-
and post- compensators are chosen accordingly.

The desired loop shape of the controller Kfinal(s) is de-
picted in Fig. 7. The singular values [20] of the frequency
response of the controller is depicted. The maximum singular
value indicates the maximum amplification of the correspond-
ing inputs by the system seen from a specific output. As it
is illustrated, the controller has zero gain at low frequencies,
which indicates the system is not affected within that range
by the controller. At mid-range and higher frequencies, it can
be seen that the controller results to a negative gain and
consequently will increase the damping ratio and decrease
ROCOF and maximum frequency deviation.

V. RESULTS
A. 3-Bus System

To evaluate the robust control, the 3-Bus System presented
in Fig. 8 is used. The state variables of the 3-Bus System
are collected in vectors and in the form ẋ = Asysx + Bsysu,

Fig. 8. 3-Bus System.

TABLE I
BUS VOLTAGES, MECHANICAL INPUTS, STATIC LOADS

Node Voltage [p.u.] Power [p.u.] Damping KDi
Inertia Hi

1 1.0526 -1.5 10 5.5
2 1.0502 1.05 10 2.75
3 1.017 0.45 10 5.5

see (10). The system characteristics are given in Table I.
The susceptances of the transmission lines are: b12 = 0.739,
b13 = 1.0958 and b23 = 1.245. At the operating point, the
synchronizing torque coefficients of the state space model
can be calculated by (5). The values of the damping torque
coefficients at each generator bus are given in Table I.

Having derived the state space model of the 3-Bus system
and the transfer function for the actual plant G(s) using (13),
the robust control design technique, presented in Section IV,
is implemented. Once the proportional controller is tuned and
the state feedback gain is defined, then it is added to each bus
of the 3-Bus system. There are 3 additional state variables
in the second order model describing the frequency dynamics
of each bus. Considering the two cases mentioned above, the
results for the frequency deviation at bus 2 of the 3-Bus system
are presented. The transfer function of the closed loop system
with Kfinal(s) as a controller and a negative feedback gain is:

CLsys(s) =
G(s)Kfinal(s)

1 +G(s)Kfinal(s)
(19)

B. Case 1 - low inertia

In case 1 the performance and the response of the system
after 50% reduction of the inertia level at bus 2 is evaluated.
As illustrated in Fig. 9, low inertia results to higher frequency
deviation and overshoot compared to the initial levels. The
effect of the controller, applied during operation of the system
with low inertia, results to smaller maximum frequency devi-
ation and lower ROCOF. This can be explained by seeing Fig.
7, where it is depicted that the controller decreases the gain of
the system transfer function at high frequencies. Overall, the
results and the impact of the controller on system response
are summarized in Table II, where the values of ROCOF,
maximum frequency deviation and settling time are presented
for this particular case.

C. Case 2 - low damping
In case 2 the performance and the response of the system

after 60% reduction of the damping torque coefficient at bus
2 is evaluated. As shown in Fig. 10, lower KD results to
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shorter settling time and damping of the oscillations, and
has no impact on frequency overshoot. The effect of the
controller, applied during operation of the system with lower
KD, results to lower frequency deviation and ROCOF, and
has a positive effect on damping of oscillations. However, it
does not compensate for the 60% reduction of KD, as it has
longer settling time, see Fig. 10, compared to initial operation
of the system. Thus, it does not increase the damping ratio
significantly. The impact of the controller on system response
for 60% reduction of the initial damping level is depicted in
Table III.

VI. CONCLUSIONS & FUTURE WORK

In this paper, the impact of the time-varying inertia and
damping on grid operation has been addressed using frequency
domain analysis. The results showed that the varying inertia
increases ROCOF and maximum frequency deviation, but im-
proves damping. To compensate for the increased uncertainty
caused by these time-varying parameters, a robust controller is
implemented. The proposed controller deals with the negative
effect of the varying inertia and damping on the frequency
dynamics. Concluding, through the use of an H∞ loop shap-
ing design procedure, the developed controller increases the
resilience of the system to imminent disturbances in the case
of high penetration of RES.

Future work intends to evaluate the proposed methodology
on higher order power system models and extend the robust
control to large systems.
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TABLE II
CASE 1 - LOW INERTIA

ROCOF ( pu
s

) Overshoot (pu) Settling t (s)

Initial Inertia 0.0909 0.013 8.66
Lower Inertia 0.1817 0.018 4.31

Robust Control 0.0031 0.008 5.51

TABLE III
CASE 2 - LOW DAMPING

ROCOF ( pu
s

) Overshoot (pu) Settling t (s)

Initial Damping 0.0909 0.013 8.66
Lower Damping 0.0909 0.013 21.60
Robust control 0.0016 0.006 17.52
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[17] A. U. Genç and S. T. Impram, “A state-space algorithm for designing
H∞ loop shaping PID controllers,” IFAC Proc. Vol., vol. 36, no. 11,
pp. 281 – 286, 2003, 4th IFAC Symposium on Robust Control Design
2003, Milan, Italy, 25-27 Jun. 2003.

[18] P. Apkarian, V. Bompart, and D. Noll, “Non-smooth structured control
design with application to PID loop-shaping of a process,” Int. J. Robust
Nonlin. Control, vol. 17, no. 14, pp. 1320–1342, Jan. 2007.

[19] R. Toscano, H 2 and Mixed H 2/H Design of Structured Controllers.
London: Springer London, 2013, pp. 199–231.

[20] K. Zhou and J. Doyle, Essentials of Robust Control, ser. Prentice Hall
Modular Series for Eng. Prentice Hall, 1998.


	Introduction
	Power System Modeling
	Dynamic generator model
	State Space Model
	Multi-machine system

	Analysis of impact of varying inertia and damping on frequency dynamics
	Modal analysis
	Sensitivity Analysis - Time varying parameters

	Structured Robust Controller
	H Loop shaping design
	Weighting Functions

	Results
	3-Bus System
	Case 1 - low inertia
	Case 2 - low damping

	Conclusions & Future Work
	Acknowledgement
	References

