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1 PROBLEM DEFINITION

1.1 Optimal power flow problem

1.1.1 The ordinary power flow

The ordinary power flow or load flow problem is stated by specifying the loads
in megawatts and megavars to be supplied at certain nodes or busbars of a
transmission system and by the generated powers and the voltage magnitudes
at the remaining nodes of this system together with a complete topological
description of the system including its impedances. The objective is to deter-
mine the complex nodal voltages from which all other quantities like line flows,
currents and losses can be derived. The model of the transmission system is
given in complex quantities since an alternating current system is assumed to
generate and supply the powers and loads.

In mathematical terms the problem can be reduced to a set of nonlinear
equations where the real and imaginary components of the nodal voltages are
the variables. The number of equations equals twice the number of nodes. The
nonlinearities can roughly be classified being of a quadratic nature. Gradi-
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ent and relaxation techniques are the only methods for the solution of these
systems.

The result of a power flow problem tells the operator or a planner of a
system in which way the lines in the system are loaded, what the voltages
at the various buses are, how much of the generated power is lost and where
limits are exceeded.

The power flow problem is one of the basic problems in which both load
powers and generator powers are given or fixed. Today, this basic problem can
be efficiently handled on the computer for practically any size system.

1.1.2 The optimal power flow

For the planner and operator fixed generation corresponds to a snapshot on-
ly. Planning and operating requirements very often ask for an adjustment of
the generated powers according to certain criteria. One of the obvious ones
is the minimum of the generating cost. The application of such a criterion
immediately assumes variable input powers and bus voltages which have to
be determined in such a way that a minimum of the cost of generating these
powers is achieved.

At this point it is not only the voltages at nodes where the loads are
supplied but also the input powers together with the corresponding voltages
at the generator nodes which have to be determined. The degree of freedom for
the choice of inputs seems to be exceedingly large, but due to the presence of an
objective, namely to reach the minimum of the generating cost the problem is
well defined. Of course the mathematics become more demanding as compared
to the original power flow problem, however, the aim still being the same, i.e.
the determination of the nodal voltages in the system. They play the role of
state variables from which all other quantities can be derived.

It turns out that the extended problem requires a more detailed definition
and different methods of solution.

The problem can be generalized by attaching different objectives to the
original power flow problem. As long as the power flow model stays the same
it is considered the optimal power flow problem where the objective is a scalar
function of the state variables. In essence, any optimal power flow problem
can be reduced to such a form.

Now, practical requirements ask for a more realistic definition, the main
addition being the statement of constraints. In the real world any variable
in the system will be limited which changes the mathematical nature of the
problem drastically. Whenever a variable reaches its upper or lower limit it
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becomes a fixed quantity and the method of solution has to recognize it as
such and be sure that the fixed quantity is optimal.

Fortunately, the theory developed by Kuhn and Tucker [1] is able to provide
the optimality conditions which guarantee the correctness of the result in the
end. However, the optimality conditions do not offer a solution method.

Present requirements are aimed at solution methods suitable for computer
implementations which are easy to handle, capable of large systems, have good
convergence and are fast. Experience shows that the performance of solution
methods in the power system analysis area are dependent on the nature of the
system model, on the type of nonlinearities, on the type of constraints, on the
number of constraints, etc.

Thus, the basic theory of optimization contribute a small part to the suc-
cess of a solution method only. It is the genius of the system analyst and of the
computer scientist which becomes the key factor for the success of a method.

Optimal power flow algorithms are the outcome of development work of
this kind and are determinant for the performance of whole classes of programs.
Hence it is worthwhile and quite rewarding to engage in the investigation of
algorithms within this problem class.

Scanning through the literature [2], [3], [4], [5], [7], [9] it will be observed
that there are many attempts to describe, define, formulate and solve the opti-
mal power flow problem. However, it seems that successful solutions emerged
only at the point where proven schemes of optimization such as linear and
quadratic programming could be applied to this very problem [8], [10], [11].
This late development was supported by other techniques which proved useful
in the area of the ordinary power flow such as the exploitation of sparsity and
Newtons’s method.

Thus, in the subsequent sections great emphasis will be placed on a tho-
rough formulation of the optimal power flow problem and on techniques which
lend themselves to an application of proven optimization methods.

1.2 Power flow simulation of an electrical power transmission

system

This subsection discusses briefly the basics for the simulation of an electrical
power transmission system on a digital computer. More information can be
obtained from many textbooks which discuss the basic power flow problem in
more detail.
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1.2.1 Nodal current - nodal voltage relationship

The relation between the complex nodal voltages V and the complex nodal
currents I of the transmission network, composed of the passive components,
transmission lines, series elements, transformers and shunts is:

I = Y ·V (1)

Every complex nodal current Ii can be formulated in rectangular coordi-
nates:

I i = Iei + j · Ifi ; i = 1...N ; N = number of electrical nodes (2)

For every complex nodal voltage V i, the following is valid in rectangular coor-
dinates for the complex nodal voltage:

V i = ei + j · fi ; i = 1...N (3)

Note that usually at one node the angle of the complex voltage is held
constant. Thus the following relationship must be valid for this one node,
called the slack node:

fslack
eslack

= kslack = constant (4)

Note that very often this constant value kslack is assumed to be zero, i.e.
the voltage angle at this node is assumed to be zero. However, in this paper
the general case of (4) is assumed to be valid.

The complex elements at row i and column j of the matrix Y are as follows:

Y ij = gij + j · bij (5)

or in polar form

Y ij = yij · (cosθij + j · sinθij) (6)

It follows from (1), (2) and (5)

Iei =
N∑
j=1

(ejgij − fjbij) ; i = 1...N (7)

Ifi =
N∑
j=1

(ejbij + fjgij) ; i = 1...N (8)

In polar coordinates the complex voltages V i are defined as follows:

V i = |V |i · (cosΘ + j · sinΘ) ; i = 1...N (9)
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As defined in (4), the voltage angle at the so-called slack node is kept fixed:

Θslack = arctan(kslack) = constant (10)

It should be noted that other network components like DC-transmission
lines are not included in this paper. Balanced three-phase network operation
is assumed.

1.2.2 Nodal power nodal voltage - nodal current relationship

In this paper in order to make certain derivations easier to understand, the
following assumptions are made with respect to node numbering:

• The network has a total of N electrical nodes

• The l load PQ-nodes are numbered 1...l

• The m generator PV-nodes are numbered (l + 1)...(l + m)

• l + m=N

• The last generator node is called the slack node (i.e. the slack node
number is N).

Note that the above mentioned slack node is usually treated as a normal
PV-generator bus with the additional constraint of a fixed voltage angle (see
(4) and (10)).

The active and reactive powers of all l PQ-load-nodes must be computed
by the following relationship:

Pi = Real{V i · I∗i } ; i = 1...l (11)

Qi = Imag{V i · I∗i } ; i = 1...l (12)

(11), (12) formulated in rectangular coordinates:
For all l PQ-nodes:

Pi = eiIei + fiIfi ; i = 1...l (13)

Qi = fiIei − eiIfi ; i = 1...l (14)

For all m PV-nodes:

Pi = eiIei + fiIfi ; i = l + 1...N (15)
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|V |2i = e2
i + f2

i ; i = l + 1...N (16)

Inserting (7) and (8) into (13) and (14) yields:

Pi =
N∑
j=1

(ei(ejgij − fjbij) + fi(fjgij + ejbij)) ; i = 1...l (17)

Qi =
N∑
j=1

(fi(ejgij − fjbij)− ei(fjgij + ejbij)) ; i = 1...l (18)

For the generator PV-nodes the active power P and the voltage magnitude
are computed as follows:

Pi =
N∑
j=1

(ei(ejgij − fjbij) + fi(fjgij + ejbij)) ; i = l + 1...N (19)

|V |2i = e2
i + f2

i ; i = l + 1...N (20)

(11), (12) formulated in polar coordinates:
For all l PQ nodes:

Pi =
N∑
j=1

(ViVjyijcos(Θi −Θj − θij)) ; i = 1...l (21)

Qi =
N∑
j=1

(ViVjyijsin(Θi −Θj − θij)) ; i = 1...l (22)

For all m PV nodes (inclusive slack node):

Pi =
N∑
j=1

(ViVjyijcos(Θi −Θj − θij)) ; i = l+1 ... N (23)

|V |i = Vi ; i = l+1 ... N (24)

Note that (24) is trivial and in principle not necessary. The equations of
(24) are omitted in the following derivations when using the polar coordinate
system.
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1.2.3 Operational limits

In the real power system many of the variables used in the above equations
are limited and may not be exceeded without damaging equipment or bringing
the network into unstable, insecure operating states:

• Limits on active power of a (generator) PV node:

Plowi ≤ PPVi ≤ Phighi (25)

• Limits on voltage of a PV or PQ node:

|V |lowi ≤ |V |i ≤ |V |highi (26)

• Limits on tap positions of a transformer

tlowi ≤ ti ≤ thighi (27)

• Limits on phase shift angles of a transformer

θlowi ≤ θi ≤ θhighi (28)

• Limits on shunt capacitances or reactances

slowi ≤ si ≤ shighi (29)

• Limits on reactive power generation of a PV node

Qlowi ≤ QPVi ≤ Qhighi (30)

In reality the reactive limits on a generator are complex and usually state
dependent. (30) is a simplification of the limits, however, by adapting
the actual limit values during the optimization, the real-world limits can
be simulated with sufficient accuracy.

• Upper limits on active power flow in transmission lines or transformers:

Pij ≤ Phighij (31)
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• Upper limits on MVA flows in transmission lines or transformers

P 2
ij + Q2

ij ≤ S2
highij (32)

• Upper limits on current magnitudes in transmission lines or transformers

|I |ij ≤ |I |highij (33)

• Limits on voltage angles between nodes:

Θlowij ≤ Θi −Θj ≤ Θhighij (34)

• Limits on total flows between areas

These inequality constraints can be formulated for MVA-, and MW-
values as follows:

– Limits on active power area flows

Plowareaa ≤
∑

a to b
Pab ≤ Phighareaa (35)

– Limits on MVA area power flows

S2
lowareaa

≤
∑

a to b
(P 2

ab + Q2
ab) ≤ S2

highareaa
(36)

1.2.4 Summary

It is an essential goal of the network operator to have all of above mentioned
inequality constraints, representing real world operating limits, under control.
The power demand which must be in balance with the generation is automa-
tically considered in the real system. Any simulation, i.e. also the OPF, must
consider this equality constraint unconditionally in order to simulate the real
power system correctly.

It must be noted that not in all networks all these constraints have the
same degree of importance. However, in general, and this is assumed in the
formulations of this paper, all these constraints have to be satisfied. Thus, any
electrical network simulation result, also the one of an OPF simulation, should
observe the above operational limits in its final result.

The mathematical model must always consider the equations (1), (11) and
(12), i.e. the relation between nodal voltages, currents and nodal powers must
be considered correctly.

It is the goal of the OPF to simulate the state of the real power system
which satisfies all of the above constraints and at the same time minimizes a
given objective, e.g. network losses or generation cost.

8



1.3 Formulation of OPF constraints

1.3.1 Variable classification

The process of solving the (optimal) power flow problem is easier to understand
if the variables are classified in several categories. They are shown in the
following.

• Demand variables: They include the variables representing constant va-
lues. Demand variables are represented by the vector P . The final si-
mulation result must leave these variables unmodified. Typical demand
variables:

– Active power at load nodes

– Reactive power at load nodes

– In general all those variables which could be control variables (see
below) but are not allowed to move (for operational or other rea-
sons). Example: Voltage magnitude of a PV node where the voltage
is not allowed to move

• Control variables: All real world quantities which can be modified to sa-
tisfy the load - generation balance under consideration of the operational
system limits (see previous subsection). Since, especially when using the
rectangular coordinate system, not all these quantities can be modelled
directly, they have to be transformed into variables with purely mathe-
matical meaning. After the computation these variables can, however,
be transformed back into the real world quantities. Control variables are
represented by the vector U .

A typical set of control variables of an OPF problem can include:

– Rectangular Coordinates:

∗ Active power of a PV node

∗ Reactive power generation at a PV node (sometimes used)

∗ Tap position of a transformer

∗ Shunt capacitance or reactance

∗ Real part of complex tap position (only if the transformer has
both taps and phase shift, otherwise the tap is a real number
and thus usually a control variable)

∗ Imaginary part of complex tap position (see remark above)
(This and the previous item are transformed back to the real
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world quantities tap and phase shift of the transformer after
the OPF computation)

– Polar Coordinates

∗ Active power of a PV node

∗ Voltage magnitude of a PV node

∗ Tap position of a transformer

∗ Phase shift angle of a phase shift transformer

∗ Shunt capacitance or reactance

• State variables: This set includes all the variables which can describe
any unique state of the power system. State variables are represented by
the vector X .

Examples for state variables:

– Rectangular Coordinates:

∗ Real part of complex voltage at all nodes

∗ Imaginary part of complex voltage at all nodes (This and the
previous item are transformed back into the real world quanti-
ties voltage magnitude and angle after the OPF computation)

– Polar Coordinates:

∗ Voltage magnitude at all nodes

∗ Voltage angle at all node

• Output variables: All other variables; they must be expressed as (non-
linear) functions of the control and state variables.

Examples:

– Rectangular Coordinates:

∗ Voltage magnitude at PQ and PV node

∗ Voltage angle at PQ and PV node

∗ Tap magnitude of phase shift transformer

∗ Tap angle of phase shift transformer

∗ Power flow (MVA, MW, MVAr, A) in the line from i to j

∗ Reactive generation at PV node

– Polar Coordinates:

∗ Power flow (MVA, MW, MVAr, A) in the line from i to j
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∗ Reactive generation at PV node

Most variables are continuous, however some, like the transformer tap or
the status of shunts are discrete. In this paper all variables are assumed to
be continuous. The discrete variables are assumed to be set to their nearest
discrete value after the optimization has been done. This does not guarantee
optimality, however, results have shown that this approach leads to practically
acceptable results.

1.3.2 Equality constraints - power flow equations

As discussed in the subsection above the power flow equations have to be sa-
tisfied to achieve a valid power system simulation result. Thus, in summary,
the following sets have to be satisfied unconditionally:

SET A: Nodal currents not eliminated, rectangular coordinates

• (7), (8), (13), (14), (15), (16) and (4) (i.e. 4N + 1 equations)

• This set A includes

– 2N current related variables (Iei , Ifi , i = 1...N )

– 2N voltage related variables (ei, fi, i=1...N )

– 2l PQ-node power related variables (Pi, Qi, i=1...l)

– m PV-node active power related variables (Pi, i=l + 1...N )

– m PV-node voltage magnitude related variables
(|V |2i , i = l + 1...N )

• For these 6N variables, 4N+1 equality constraints are given.

SET B: Nodal currents eliminated, rectangular coordinates

• (17), (18), (19), (20) and (4) (i.e. 2N + 1 equations)

• This set B includes

– 2N voltage related variables (ei, fi, i = 1...N )

– 2l PQ-node power related variables (Pi, Qi, i=1...l)

– m PV-node power related variables (Pi, i = l + 1...N )

– m voltage magnitude related variables (|V |2i , i=l + 1...N ).
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• For these 4N variables, 2N+1 equality constraints are given.

SET C: Polar coordinates

• (21), (22), (23) and (10) (i.e. 2N−m+1 equations). This set C includes

– 2N voltage related variables (Vi, Θi, i = 1...N )

– 2l PQ-node power related variables (Pi, Qi, i = 1...l)

– m PV-node power related variables (Pi, i = l + 1...N ).

• For these 2N −m variables, 2N −m + 1 equality constraints are
given.

Note, that in the actual implementation, only one of these sets A, B or C
will actually be chosen. If one is satisfied, the other two are also satisfied. Also
note that set C has fewer variables and equations than sets A and B. However,
this does not mean that set C and as a consequence the polar coordinate system
should always be preferred for power system modelling.

The complex tap of a transformer is also a variable which should be in-
cluded in the above sets A, B or C. However, since they do not change the
principles of the following derivations and also for space reasons, they are
omitted in the subsequent sections.

1.3.3 Equality constraints - demand variables

For every demand variable an additional equality constraint has to be formu-
lated. The loads in a power system are usually assumed to have a constant
active part P and a constant reactive part Q. These two values usually cannot
be changed by the operator (not taking into consideration load management)
and must not be modified by the normal OPF computation. Thus for eve-
ry load node where the load cannot be controlled, the two following equality
constraints must be valid:

PscheduledPQi − Pi = 0 (37)

QscheduledPQi
−Qi = 0 (38)

An additional demand variable is the voltage magnitude of a generator
PV node where the voltage is not allowed to move. This is represented in the
following simple equation with polar coordinates:

VscheduledPVi − Vi = 0 (39)
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In rectangular coordinates this is:

V 2
scheduledPVi

− e2
i − f2

i = 0 (40)

For other demand variables (and fixed control variables) similar equality
constraints can be formulated.

1.3.4 Summary - equality constraints

The equations for those equality constraints which have to be satisfied uncon-
ditionally can be summarized in general form as follows:

g(X ,U ,P) = 0 (41)

In (41), g(X ,U ,P) represents either the equality constraints of sets A, B
or C and also those for all demand variables. The variables of the vectors X ,
U and P are either all rectangular coordinates or all polar coordinates.

1.3.5 Inequality constraints

As shown in a previous subsection, many operational values must be limited
in the real power system. These limits must be modelled correctly in the OPF
simulation in order to have valid simulation results. Mathematically they are
formulated as inequality constraints.

The inequality constraints (25) ... (36) can be used in the OPF formula-
tion directly only if they represent bounds on OPF control or state variables
or functions of OPF control or state variables. E.g. (31) where the active flow
between nodes i and j is limited, cannot be taken directly in the OPF formu-
lation since the variable Pij is an output variable and must be expressed as a
function of the control and state variables.

The active and reactive flows Pij and Qij are computed with the state and
control variables in rectangular coordinates as follows:

Pij = (eifj − ejfi)Bij + (e2
i + f2

i − eiej − fifj)Gij (42)

Qij = (−e2
i − f2

i + eiej + fifj)Bij + (eifj − ejfi)Gij − (e2
i + f2

i )Bio (43)

In polar coordinates this is:

Pij = V 2
i yijcosθij − ViVjyijcos(Θi −Θj − θij) (44)

Qij = V 2
i (−Bio − yijsinθij)− ViVjyijsin(Θi −Θj − θij) (45)
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(42) and (44) will result in the OPF inequality constraints for pure active
(MW) -flow limits:

Pij ≤ Phighij (46)

For MVA-flow limits the following inequality constraints are valid:

P 2
ij + Q2

ij ≤ S2
highij (47)

Depending on the choice of the coordinate system either (42) and (43) or (44)
and (45) have to be substituted into (47).

The rule that all inequality constraints are either written in polar or all in
rectangular coordinates is also valid here.

All inequality constraints must be expressed as functions of the vectors U
and X which contain all the control and state variables. The general formula-
tion for all these inequality constraints is as follows:

h(X ,U) ≤ 0 (48)

In (48) every function hi(X ,U) represents one of the above inequality cons-
traints. The actual limit values are put to the left hand side of the equation
in order to have a vector 0 at the right hand side of (48).

1.3.6 Summary - OPF constraints

The constraints of the OPF problem can be split into two parts: The equality
constraints, representing the power flow equations and the demand variables
and the inequality constraint set, representing all the operational constraints.
The following is the general mathematical expression for these two sets:

g(X ,U ,P) = 0 (49)

h(X ,U) ≤ 0

Every OPF algorithm must try to satisfy (49). Only then will the result simu-
late the real power system correctly and show a practically useful result.

In the subsequent mathematical treatment of the OPF, it is usually not
important to make a distinction between the various types of variables. Thus
(49) can be formulated with general OPF variables x:
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g(x) = 0

h(x) ≤ 0
(50)

1.4 Objective functions

1.4.1 Introduction

The formulation of equality and inequality constraints to model the power
system and its operational constraints correctly has been discussed in the pre-
ceding subsections. These mathematical constraints, however, do not specify
one unique network state. An enormous number of power system states can
be computed when taking these constraints into account only. Thus the choice
of an objective to simulate special, maybe extreme or optimal power system
states follows naturally.

There are mainly two objectives which present-day electric utilities try to
achieve beside the consideration of the operational constraints:

• Reduction of the total cost of the generated power: Although the swit-
ching in and out of generating units (with consideration of operational
constraints like minimum down time, etc.) should also be considered
this is usually not part of the OPF computation and handled outside
by special unit commitment algorithms. Unit commitment algorithms
consider the network only as a set of point sources and loads with pre-
dicted changes over time and do not take into account constraints like
maximum branch flows and voltage limits. Thus today the scope of the
OPF is limited to short term (i.e. approx. 15min. - 1h) network optimi-
zation with a given and fixed set of on-line generating units. This is also
assumed in this paper.

• Reduction of active transmission losses in the whole or parts of the net-
work: This is a common goal of utilities since the reduction of active
power losses saves both generating cost (economic reasons) and creates
at the same time higher generating reserves (security reasons).

The operator at a utility has to decide which goals are most important.
Often the type of utility and its network, generation and load characteristics
(e.g. predominant hydro power against predominant thermal power, a network
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with many long lines with few meshes against a highly meshed network, etc.)
determines the main goals of a utility.

1.4.2 Objective function A: minimization of total generating cost

Usually generator cost curves, i.e. the relationship between generated power
and the cost for this generated power is given in piecewise linear incremental
cost. This has an origin in the simplification of piecewise concave cost curves
with the valve-points as cost curve breakpoints. Since concave objective functi-
ons are very hard to optimize they were made piecewise quadratic which again
corresponds to piecewise linear incremental cost curves. This type of objective
function could be used in the simple so-called Lambda-Dispatch (Economic
Dispatch, ED) where the set of optimal unit base can be determined easily by
graphic methods with the consideration of generating unit upper and lower
active power limits only.

Piecewise linear incremental cost curves (incremental cost usually mono-
tonically increasing with increasing power) correspond to piecewise quadratic
cost curves by doing an integration of the incremental cost curves. This type of
cost curve with smooth transition in the cost curve breakpoints (i.e. same first
derivative of cost curve segment at left and right hand side of the cost curve
break points) can be approximated with very high accuracy by one convex
non-linear function.

Although specialized algorithms can use the fact that the cost curves are
piecewise quadratic it is assumed in this paper that the cost curves are of
general nature with the only condition of being convex and monotonically
increasing.

Generation cost curve objective functions are usually functions of their
own generated power and not the power of another generating unit j.

Thus for the following derivations the total cost C of all generated powers
to be optimized can be written as follows in function of the generated powers:

Minimize Fcost =
N∑

i=l+1

Fcosti(Pi) (51)

m = N − l = number of generating units to be optimized

l = number of fixed load PQ-nodes

Note that the power generated at the slack node N has also a cost function.
This must be considered in the cost objective function of (51).

Also note that in many algorithms the cost curves Fcosti are assumed to
be quadratic or piecewise quadratic.
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1.4.3 Objective function B: minimization of active transmission
losses

The active transmission losses can be expressed in different ways: a) By a
summation of the branch losses of all branches to be considered or b) by a
summation of the active nodal powers over all nodes of the network.

a) Losses: computed over branches The total losses are the sum of the
losses of all branches and transformers in the area of the network (or the whole
network) where the losses are to be minimized:

FLoss =
NB∑
i=1

FLossi (52)

NB = Number of branches of optimized area

where

FLossi = Pkm + Pmk ; branch i lies between nodes k and m (53)

In (53) the flows between nodes k and m can be replaced by the equations
(42) and (43) for rectangular coordinates respectively (44) and (45) for polar
coordinates:

In rectangular coordinates the following results:

FLossi = Gmk((em − ek)2 + (fm − fk)2) (54)

In polar coordinates the following results:

FLossi = (V 2
k − V 2

m)ymkcosθmk

+VmVkykm (cos(Θm −Θk − θkm)− cos(Θk −Θm − θkm))
(55)

b) Losses: computed over nodes In this case only the losses of the whole
network can be computed and not those of a subnetwork. The computation of
the total losses is very similar to the computation of the total cost: The total
network losses are given when all active nodal powers are added.

The total active losses are computed as follows:

FLoss =
N∑
i=1

Pi ; N = Number of network nodes (56)

The slack node is always included in the total loss objective function.
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1.4.4 Discussion

As has been shown in the preceding two subsections the losses can be formu-
lated in two different ways, one going over branches the other over the nodes.
Method a (branches) is more flexible since it allows to formulate the losses
for only parts of a network. This corresponds often to a practical case where
each utility models its own network and also those of neighbouring utilities
(for reasons of the accuracy of the result) but it can optimize and control its
own area only.

Method b on the other side has certain advantages since it allows a rather
simple formulation for the total network losses which again allows the use of
specialized algorithms for their solution as will be shown in the next section.

For the following derivations both objective functions are assumed to be
of general nature and can be formulated as follows.

Minimize F(X ,U) =
∑
i∈EL

Fi(Xi,Ui,Xj,Uj...) =
∑
i∈EL

Fi(X ,U) (57)

where EL = set containing either

a) m generator nodes (cost optimization) or

b) N network nodes (total network loss minimization) or

c) NB area branches (partial network area loss minimization).

Since the OPF does not need a distinction between control (X ) and state
variables (U) the general objective function formulation in OPF variables is
as follows.

Minimize F(x) =
∑
i∈EL

Fi(x) (58)

This general formulation covers both the losses and also the cost objective
functions.

1.5 Optimality conditions

In this subsection the conditions which have to be satisfied in the optimal solu-
tion are discussed. The way how to reach the solution where these optimality
conditions must be satisfied is not discussed here. The subsequent sections
discuss how to reach the optimum.

The general OPF problem formulation is summarized as follows:
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Minimize F(x)

subject to g(x) = 0

and h(x) ≤ 0

(59)

The optimality conditions for (59) can be derived by formulating the La-
grange function L:

L = F(x) + λTg(x) +µTh(x) (60)

The Kuhn-Tucker theorem [1] says that if x̂ is the relative extremum of
F(x) which satisfies at the same time all constraints of (59), vectors λ̂, µ̂ must
exist which satisfy the following equation system:

∂L
∂x = ∂

∂x

(
F(x) + λTg(x) +µTh(x)

)
|
x̂,λ̂,µ̂

= 0

∂L
∂λ

= g(x) |x̂ = 0

diag{µ}∂L
∂µ

= diag{µ} h(x) |
x̂,µ̂ = 0

µ̂ ≥ 0

(61)

The third constraint set together with the last set means that an inequality
constraint is only active when µi > 0.

It is the goal of the OPF algorithms to find a solution point x̂ and corre-
sponding vector λ̂, µ̂ which satisfy the above conditions.

If this solution is found there is no guarantee that the global optimum
is found. The Kuhn-Tucker conditions guarantee a local or relative optimum
only. However, although no formal proof is possible, usually only one optimum
(i.e. the global optimum) exists for practical OPF problem formulations. æ
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2 HISTORICAL REVIEW OF OPF DEVELOP-

MENT

2.1 The early period up to 1979

The development of an optimal solution to network problems was initiated by
the desire to find the minimum of the operating cost for the supply of electric
power to a given load [2], [3]. The problem evolved as the socalled dispatch
problem. The principle of equal incremental cost to be achieved for each of the
control variables or controllers has already been realized in the pre-computer
era when slide rules and the like were applied.

A major step in encompassing not only the cost characteristics but also
the influence of the network, in particular the losses was the formation of an
approximate quadratic function of the network losses expressed by the active
injections [2]. Its core was the B-matrix which was derived from a load flow
and was easily combined with the principle of equal incremental cost thus
modifying the dispatched powers by loss factors. The method has lent itself to
analog computer solutions in the online operation of systems. At this point,
however, no constraints could be considered.

In the following period the development has mainly emphasized the for-
mulation of a more complete optimal power flow towards the inclusion of the
entire AC network [4], [5], [7], [9], [10]. The necessity to consider independent
and dependent variables has led to a considerable increase of the system of
equations which where nonlinear and thus difficult to handle. The formulation
of the problem must be considered as a remarkable improvement as shown by
Squires, Carpentier, however, still there was no effective algorithm available.
At that time the ordinary load flow made considerable progress [6], [12] and
the capabilities of computers showed promising aspects. Hence, the analysts
were intrigued by the possibilities in the area of the load flow and tried to
incorporate this success in the area of the optimal power flow.

A remarkable conceptual progress was made by Dommel, Tinney [7] when
they formulated the exact optimality conditions for an AC based OPF which
allowed the use of the solution of an ordinary load flow. By eliminating the
dependent variable with the help of a solved load flow iteration a gradient
method was designed which led to a true optimal solution of a dispatch pro-
blem including the detailed effects of the AC network. This step marks an
important step in the development of the OPF since there was an algorithm
which had several ramifications (reduced gradients, etc.) and it considered al-
ready constraints of variables. The technique employed was based on penalty
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functions which could easily be attached to the Lagrangian function of the
basic method. The gradient or reduced gradient included derivatives of the
quadratic penalty functions also which by their character had quite different
magnitudes as compared to the gradients of the objective functions. As a con-
sequence the parameter which determined the step length in the direction of
the gradient was not able to confine the solution sufficiently close. The result
was that the convergence of the whole approach was quite poor. In particular,
maintaining constraints by taking in and releasing constrained variables was
not satisfactory. Programming packages were developed but required detai-
led tuning and turned out not to be applicable to general problems. A quite
complete overview of these developments is given in [17].

2.2 Recent developments since 1979

Since the gradient concept did not turn out to be successful, also from the
point of view of treating constraints several other concepts were pursued. One
line was the application of linear programming which offered a clear approach
to handling constraints [15], [16]. Another direction was the use of quadratic
programming whereby standard quadratic routines were used [14], [20]. A
different approach led to exploiting the optimality conditions in the form of
Newton’s method.

The first two methods are characterized by the use of a solved load flow
which yields a feasible starting point. Newton’s method led to iterative solution
steps which approach the optimal result in a global way [19].

Each of these approaches showed considerable progress over gradient me-
thods both as far as convergence is concerned and with regard to treating
constraints.

Linear programming methods showed a first success in the area of dispat-
ching generator outputs whereby cost curves have been represented by linear
segments and the load flow was incorporated in a linearized fashion (Stott,
[15]). This line has been further refined recently such that an AC model of the
network could be treated as well and a reactive dispatch for the purposes of
minimizing losses was made possible.

Quadratic programming followed [18] more closely the facts of the system
model which shows piecewise quadratic cost curves, a quadratic behavior of
losses and of powers in general, e.g. the slack power. Since the quadratic beha-
vior is sufficiently accurate for small deviations only the quadratic approach is
also iterative whereby standard quadratic programming routines were applied.
The general observation was that convergence of these methods was extremely
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good, however, the formation of quadratic forms, of loss formulae and other
conversions require a considerable effort which turned out to be a drawback
as far as the overall performance was concerned.

For both linear and quadratic methods the load flow solution has to be
converted to a compact form or the socalled incremental power flow which can
be extended to a quadratic form. It was instrumental for the application of
these methods and still is for the most recent forms of the OPF.

The development of the Newton approach for the purposes of the OPF is
a consequence of the success of the techniques derived for the ordinary power
flow [19]. Sparsity techniques, ordering, decoupling methods, etc. have sugge-
sted to maintain and keep the original optimality conditions derived from the
Lagrangian and to treat the large system of equations as if it would be a power
flow problem which nowadays can be solved for thousands of nodes. The for-
mulation and the solution of the problem is easy for the unconstrained case.
Constraints had to be treated by penalty functions, however, no straightfor-
ward routine could be devised which leads to active constraints. The method
remains with heuristic steps which take in and release constraints which re-
quires updating steps of the factorized system matrix. Although Newton’s
method was considered as the only approach to treat the loss minimization
problem effectively some time ago this image is fading somewhat and is giving
way to methods which incorporate linear programming routines for reasons of
performance, uniqueness of approach and use of proven routines.

In a broader perspective the optimal power flow is becoming the main
tool for the assessment and enhancement of the security of the system [22],
[23]. The objective function may have a direct relation to security, e.g. in the
case where the deviation from a desirable voltage profile is to be minimized.
Otherwise it is the tool to achieve a well defined solution, with an economic
benefit, as given by minimum losses.

Security, however, is a problem where constraints are to be maintained or
where excess variables are corrected. A modern OPF lends itself to the treat-
ment of these requirements and the recent efforts in improving the methods,
in particular, as far as constraints are concerned, prove the great interest in
this aspect of the OPF.
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3 CLASSIFICATION OF ALGORITHMS TO

ACHIEVE OPF OPTIMALITY CONDITIONS

3.1 Practical constraints and desirable features of the algo-

rithms

It has been shown in the preceding sections that the OPF problems can be de-
fined in different ways. The determination of an optimal, steady state network
operation is the general goal. Utilities are interested in achieving this goal for
both network planning studies and also in real-time operation.

In planning studies the utility wants to know how to expand or change
its network in order to achieve e.g. minimum losses under a variety of load
scenarios. Another problem is the minimization of cost of future planned gene-
ration. The OPF is used to propose to the utility where to put what generator
capacity in the present or future network to achieve minimum cost operation.
It is obvious that statistical values for load changes or approximations for the
expected cost of new generators will have to be considered and thus make the
result of the OPF subject to many assumptions, predictions and uncertainties.
The OPF algorithm used for planning studies should be able to handle this
data which is usually based on statistics.

Another important area where the OPF is and will be applied, is the real-
time OPF, i.e. the use of the OPF result for the actual network operation.
The goal is here to take the OPF result and try to realize the computed
values in the actual, real-time network. This real-time network optimization
is usually done under operator control, i.e. the computed optimal values are
read by the operator who changes the actual controls to achieve the same
network state as obtained in the OPF simulation. A closed loop OPF, i.e. the
automatic realization of the optimal computed solution in the real network, is -
at least within the near future - not realistic, but may be approached by a close
interaction between the operator and the simulated OPF result, maybe with
expert system guidance. The practical aspects of the OPF implementation
are key to the real-time use of the OPF. In this application of the OPF the
algorithms are useless if their output does not conform to practical aspects.
Under the assumption that the operator tries to achieve the optimal solution
some practical constraint considerations are critical to the application of the
OPF:

• Computational speed: The OPF result must be obtained within a
reasonable timeframe, starting at the time when the real-time data is
obtained from the network. Since state estimation algorithms usually
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take the raw data before being used by the OPF another time delay
exists. Both state estimation and succeeding OPF computations must
be fast enough to be practically applicable. The realization of speed is a
combination of fast hardware and fast algorithms.

– The hardware must be fast, but must be in the right price ran-
ge and computer class used in the energy management systems at
utilities. A practical solution to this constraint is today, with the
systems offered by the energy management system vendors, often
quite difficult to achieve. New technologies, fully applied to the
energy management systems, should help to solve this problem in
the near future.

– The software must be such that it can compute OPF problems
with network sizes of thousands of electrical nodes within a rea-
sonable (wall-clock) time. Speed can mainly be achieved by trans-
lating the physically given special characteristics of the electrical
network in special OPF algorithms. An example is given by the
loosely connected network topology which is translated into a spe-
cial sparsity storage scheme in the computer which again makes
fast iterations possible (only non-zero value arithmetic operations).
Another typical electrical behavior is the locality of network state
changes, e.g. the effect of changing the voltage at a generator node
remains in the local vicinity of the changed generator and does not
spread over the whole network. This is translated into algorithms
which use the localized behavior of the network and speed up com-
putation by not having to compute all network variables but only
the local ones. Also the fact that not many branch limits will be ac-
tive at the optimal solution can be used by the OPF algorithm and
computational speed will be improved by doing so. Consideration of
data uncertainties can be used to speed up the algorithmic solution:
E.g. if the accuracy of a large generator output power measurement
is about five MW, making a computation with an accuracy of one
MW is useless and consumes unnecessary computing time.

• Robustness: The OPF may not, under any circumstances, diverge or
even crash. Fast and straight-forward convergence is important to accep-
tance and real-time application of the OPF result. Even in cases where
there is no optimal solution with consideration of all constraints the OPF
must tell the user that there is no solution and output a near-optimal
solution which satisfies most of the constraints. Operator or expert sy-

24



stem involvement in these difficult to solve cases is desirable to achieve
a practically useful OPF solution.

• Controller movements: The OPF assigns an optimal value to each
possible control variable. Assuming that there is a large number of pos-
sible control variables the OPF algorithm would move most of them from
the actual state to the optimal state. However, a practical real-time rea-
lization of this optimal state is not possible since the operator cannot
have e.g. hundred generator voltages be moved to different settings wi-
thin a reasonable time. Only the most effective subset should be moved,
which means that within the OPF the algorithmic problem of moving the
minimum number of controllers with maximum effect has to be solved.
Another problem with the movement of controllers is the distance it has
to move from the actual to the desired, OPF computed optimal value.
Time constraints like maximum controller movement per minute must
be considered to achieve practical OPF use. This again leads to another
critical OPF point: When talking about time aspects of movement the
load changes within pre-determined time frames should also be conside-
red. As an example, when the load changes very rapidly within the next
fifteen minutes the generation should be optimized with consideration
of the actual and the expected load in fifteen minutes. The OPF can
result in different optimum solution points depending on the constraints
considered in the optimum.

• Local controls: Tap changers are usually used to regulate voltages lo-
cally to scheduled values. These scheduled voltage values can be more
desirable than any optimal voltages computed by the OPF. A localized,
not optimal control might practically be preferred to the solution for this
control obtained by the OPF. If this is the case the OPF algorithm has
to handle this situation.

Some of these practical constraints can be incorporated into the classical
OPF formulation shown in preceding sections. Where possible this is done in
the inequality constraint set. However, some practical constraints like the local
control discussed above is usually taken out of the optimization algorithm.
These constraints are taken into account separately as part of an overall OPF
solution, where one part is the optimization algorithm and the other is an
algorithm based usually on heuristics and algorithmic application of special
characteristics of the electrical network. This separation will be discussed in
the next sections.
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The solution of the classical OPF problem formulation (see section 1), the
practical aspects discussed above and the mathematically known algorithms
lead to OPF classifications which are discussed in the next subsection.

3.2 Classification of OPF algorithms

3.2.1 Distinction of two classes

The separation of OPF algorithms into classes is mainly governed by the fact
that very powerful methods exist for the ordinary load flow which provide
an easy access to intermediate solutions in the course of an iterative process.
Further, it can be observed that the optimum solution is usually near an
existing load flow solution and hence sensitivity relations lead the way to the
optimum. Hence, one class exists which relies on a solved load flow and on
tools provided by the load flow.

The second class originates from a rigorous formulation of the OPF pro-
blem, employs the exact optimality conditions and uses techniques to fulfill
the latter. In this case a solved load flow is not a prerequiste. The preferred
method for reaching the optimality conditions is Newton’s method.

There are advantages and disadvantages in both methods which have a
certain bearing depending on the objective, the size of the problem and the
envisaged application.

Hence, optimal power flow algorithms will be discussed in two classes:

• Class A: Methods whereby the optimization starts from a solved load
flow. The Jacobian and other sensitivity relations are used in the opti-
mizing process. The process as a whole is iterative. After each iteration
the load flow is solved anew.

• Class B: Methods relying on the exact optimality conditions whereby
the load flow relations are attached as equality constraints. There is no
prior knowledge of a load flow solution. The process is iterative and each
intermediate solution approaches the load flow solution.

3.2.2 Discussion of class A algorithms

When the load flow is solved in the known way the following information is
available or can be extracted.

• the set of nodal voltages (complex or amplitude/angle)

• the Jacobian matrix either original or in factorized form
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• the incremental power flow either in linearized form or with a quadratic
extension

The dependent and independent variables fulfill the load flow equations
and are consistent. The variables are within limits or not too far off. Hence
the Jacobian and any derived functions may be used as sensitivity relations.

The actual optimizing process is separate whereby sensitivity relations of
the load flow are incorporated. Constraints are introduced at this stage. In so-
me cases dependent variables are eliminated before the actual solution process
in order to arrive at smaller size matrices, tableaus, etc.

An examples for class A methods is given by Dommel [7].
The choice of class A methods can be appreciated when performance

aspects and certain limitations are considered.
One outstanding advantage is the clear and systematic treatment of cons-

traints when linear and quadratic programming methods are employed in the
optimization part. The load flow supplies sensitivity relations which are quite
often extractable in a reduced form, e.g. linear incremental power flow which
is a scalar relation. Constraints are formulated in terms of the set of remaining
variables (when a subset of variables has been eliminated). The active power
dispatch is an excellent example of a class A method. The Hessian matrix de-
rived from the quadratic cost functions is diagonal and the incremental power
flow is a scalar.

In Stott [15] cost curves are approximated by straight lines. Hence the
optimization is done on the basis of linear programming.

Class A methods have been applied to loss minimization but in this case
the quadratic form has to be derived from the load flow (extended incremental
power flow). The computational effort in forming the quadratic form and its
treatment within the quadratic programming routine limits the application of
class A methods for loss minimization. The observation is that systems above
300 nodes require comparatively large computing times.

There is however one aspect of class A methods, namely the use of appro-
ximations in the formation of the Hessian or the use of linear approximations.
It turns out that it is the linear relations of the load flow (incremental power
flow) which determine the exact optimum. Quadratic relations and their ap-
proximations determine the speed of convergence, they limit step length etc.
If suitable approximations to the Hessian can be found, quadratic and linear
methods within class A can be quite powerful.
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3.2.3 Discussion of class B algorithms

Class B algorithms start from the optimality conditions evolving from a Lag-
rangian function. The optimality conditions comprise derivatives of the objec-
tive functions and equality constraints. It is to be remembered that they are
conditions and give little indications as to their fulfillment. Class B methods
aim at the satisfaction of the optimality conditions in a direct way whereby
inequality constraints usually are treated in a special form.

There are two approaches which fall into this category. It is Newton’s
method which allows to meet the optimality conditions as long as they are
differentiable. A second method is available if the Lagrangian is quadratic
which results in linear optimality conditions. Constraints can be treated by
linear programming as will be shown later. As a matter of fact Newton’s
method and this quadratic approach merge into one single method when the
Lagrangian is quadratic or when the first derivatives of the Lagrangian are
kept constant (quasi- Newton).

The advantages of class B methods lie in the fact that the Hessian is
very sparse or remains constant or can be inserted in approximate terms.
It is a non-compact method which does not result in a progressive increase
in computation time for the formation of the Hessian or for the solution of
the optimization part. The overall system of equations can be very large in
dimension but it is very sparse. Large numbers of nodes can be handled. In
case of Newton’s methods the coefficients of the matrices need not be precise
since the accuracy of the solution is guaranteed by the mismatches (right hand
sides), e.g. decoupled loadflow methods can be employed.

As it stands now class B methods have difficulties in handling constraints.
The standard approach at the moment seems to be to treat constraints by pen-
alty terms whereby active constraints are determined by heuristic methods.
The consequence is that the system of equations needs updating and refacto-
rization which in the end deteriorates the performance.

The quadratic method mentioned above avoids this problem and is able to
treat constraints in a systematic fashion.

The recent development has favored class B methods for large systems, in
particular when losses are to be minimized.
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4 OPF CLASS A: POWER FLOW SOLVED

SEPARATELY FROM OPTIMIZATION

ALGORITHM

4.1 Introduction

In this section the OPF formulation is solved by a class of algorithms where
the power flow is used in the conventional way to solve the power flow problem
for a given set of control and demand variables with fixed values. This solution
is then taken to be the starting point for an optimization. The optimization
is thus separated from the conventional power flow solution algorithm. Since
as will be shown in the next subsection the optimization represents only an
approximation to the original OPF problem, its solution may not be the final
one and so the optimized OPF variables are transferred back to the power flow
problem which is solved again. The result of the optimization is thus taken
as the input for the power flow which is solved, this result is again taken as
input for the optimization problem, etc. All OPF Class A algorithms have this
procedure in common.

The power flow is not discussed in this paper and is assumed to be known.
Extensive literature can be found in papers and student text books. However,
the optimization part where several algorithms can be used is discussed in the
following subsections.

Thus the various OPF class A algorithms show differences mainly in the
optimization part. One of two algorithms is usually used for the optimization
part: Either a linear programming (LP) or a quadratic programming (QP)
based algorithm. Both algorithms can solve their respective optimization pro-
blem with straightforward procedures and no heuristics are needed. The main
difference between both optimization problem definitions can be found in the
objective function formulation: The LP can handle only linear objective func-
tions,

LP: Minimize F(x) = cTx (62)

and the QP handles quadratic objective functions:

QP: Minimize F(x) = cTx +
1
2
xTQx (63)

Both optimizations are restricted to consider linear equality and inequality
constraints:

Jx = b1 (64)
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and

Ax ≤ b2 (65)

The LP objective function can be seen as a simplification of the QP objecti-
ve function by neglecting the quadratic objective function terms as represented
in the matrix Q. From this point of view any QP formulation can easily be
transformed into an LP formulation.

Note, however, that the actual solution processes for both LP and QP are
distinctly different.

Both LP and QP solution algorithms are described in textbooks and ma-
thematical details of how to get the iterative optimal LP or QP solution are
briefly discussed in the appendix section A.1 (LP) and A.2 (QP) of this paper.
However, in section 4.5 of this paper, an engineered LP version is mentioned
which goes beyond the conventional LP linear objective: This LP-based algo-
rithm is tuned to the typical OPF problem objective functions and can solve
general separable, convex objective functions. In addition, in the appendix
A.2 a QP-algorithm is described which works with well known LP tools. It
is important to note, that independent of the engineered modifications to the
original LP or QP algorithms, the basic principles of the chosen LP or QP
optimization remain always valid.

In the OPF class A approaches the general OPF problem formulation is
approximated around an operating point vector xk. The index k means that
this operating point will vary during the OPF class A solution process where
k is incremented by 1 from one iteration to the next. The OPF problem is
formulated in a quadratic approximation around this operating point xk for the
objective function F , however in linearized form for the equality and inequality
constraints. The linearization of the constraints is justified by the fact that
both LP and QP algorithms can handle linearized constraints only. Thus the
problem formulation is adapted to the mathematical problem formulation,
which then leads to a straightforward optimization solution.

Approximations to both the objective functions and to the constraints lead
to inaccuracies which must be corrected by some means. In OPF class A al-
gorithms this is done by solving an exact AC power flow once an optimized
solution (which is optimal only with respect to the approximated problem for-
mulation) has been obtained. The repetitive execution of power flow and LP,
respective QP optimization must lead to better, more accurate approximati-
ons, as more power flow-LP or QP optimizations are executed. The solution to
the problem of getting this iterative process to converge is critical. Note, since
the power flow has no degree of freedom and thus no ability to influence the
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overall convergence process, the iterative LP or QP optimization steps alone
are responsible for obtaining convergence. In order to clarify this point, an
example is given: In order to justify the approximations it might be necessary
to restrict the movement of certain variables x from the starting point xk to its
optimum xkopt. No straighforward mathematical algorithm exists which tells,
how far the variables are allowed to move within the optimization algorithm.
Thus, since approximations are valid only for small deviations from an ope-
rating point, the definition of what small means can be critical to the overall
convergence.

In the following subsection a derivation is given of how to get an LP or QP
problem formulation, starting from the general OPF problem formulation.

4.2 OPF class A optimization problem formulation

The original OPF problem formulation as given in (59) is taken as starting
point for an approximated optimization problem. In the following, a special
formulation with an approximation of the quadratic objective function with
second and first order approximated equality constraints and linearized in-
equality constraints is derived. This formulation is needed to derive a QP
formulation which can be solved by the algorithms given from the mathemati-
cians. The LP formulation can easily be derived from the QP by neglecting the
quadratic terms of the objective function. Note that an LP can always be de-
rived from a QP. However, it is not evident that the LP algorithms for the LP
problem formulation (even if derived from the original QP problem) converge
in a comparable way to QP algorithms for the QP problem formulation.

The following general derivations are made such that in a later subsection
the different LP and QP optimization problem formulations for the cost and
the loss optimization are easy to understand.

In the following formulas the OPF variable vector x is split into several
subvectors:

xT = (xT
1 xT

2 xT
3 xT

4 ) (66)

where

• x1: All active power variables Pi at generator PV nodes (dimension: m)

• x2: All active power variables Pi at load PQ nodes (dimension: l)

• x3: Vector containing the subvectors x31 and x32:

– x31: All reactive power variables Qi of all PQ-load nodes (dimen-
sion: l)
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– x32: All voltage magnitude variables |V |2i of all generator PV nodes
(dimension: m) (only when taking rectangular coordinates; when
using polar coordinates, the vector x32 does not exist)

• x4: Either all real and imaginary parts of voltage variables ei, fi (dimensi-
on: 2N) (when taking rectangular coordinates) or all voltage magnitudes
and all voltage angle variables Vi, θi (dimension: 2N) (when taking polar
coordinates)

The equality constraint set is also split into several subsets. Note that
the subset B, as explained in subsection 1.3.2 of this paper, is taken in the
following derivations. For the other sets, similar derivations can be made.

gT = (gT
1 gT

2 gT
3 gT

4 ) (67)

where

• g1: Load flow equations representing the active powers at all PV nodes
(number of equality constraints of type g1: m).

• g2: Load flow equations representing the active powers at all PQ nodes
(number of equality constraints of type g2: l).

• g3: Load flow equations representing the other non-active-power varia-
bles like voltage magnitude at PV nodes, reactive power at PQ nodes
and the equality constraint for the fixed slack-node angle (number of
equality constraints of type g3: N + 1).

• g4: Demand variable related equality constraints: Fixed active and reac-
tive loads at some PQ nodes, fixed voltage at some PV nodes, etc. (num-
ber of equality constraints of type g4: d; note that the number cannot be
given in function of network nodes or other typical network parameters;
the actual number, assumed to be d, depends on the available choice of
demand variables of the network).

The approximated optimization problem is now as follows: Minimize either
the total generation cost

Fcost(x1) = Fcost(xk
1) + cT

k
∆x1 +

1
2
∆x1

TQk∆x1 (68)

or minimize the total network losses:

Floss(x1, x2) = Floss(xk
1, xk

2) + 1T∆x1 + 1T∆x2 (69)
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(In this paper only the loss objective function of (56) is used for further de-
rivations. Similar derivations are possible for the other loss objective function
(52).)

subject to the equality constraints (quadratic approximation for all equa-
lity constraints g1, g2 and g3):

g1(xk
1, xk

4) + ∆x1 + J14
k∆x4 +

1
2
∆x4

TM14
k∆x4 = 0 (70)

g2(xk
2, xk

4) + ∆x2 + J24
k∆x4 +

1
2
∆x4

TM24
k∆x4 = 0 (71)

g3(xk
3, xk

4) + ∆x3 + J34
k∆x4 +

1
2
∆x4

TM34
k∆x4 = 0 (72)

For the equality constraint set g4 only a linearized approximation is used:

g4(xk
1, xk

2, xk
3, xk

4) +
4∑
i=1

J4i
k∆xi = 0 (73)

The same holds for the inequality constraint set h:

h(xk
1, xk

2, xk
3, xk

4) +
4∑
i=1

Ai
k∆xi ≤ 0 (74)

In (68) ... (74) some abbreviations have been used:

ck =
∂Fcost

∂x

∣∣∣∣
x=xk

; Qk =
∂2Fcost

∂x2

∣∣∣∣∣
x=xk

Jkij =
∂gi
∂xj

∣∣∣∣∣
x=xk

; Mk
ij =

∂2gi

∂x2
j

∣∣∣∣∣
x=xk

Ak
i =

∂h
∂xi

∣∣∣∣
x=xk

Note that index k means that these variables, vectors and matrices are
state dependent and can vary from one state to the other (or from iteration
to iteration).

Assume that a power flow has been solved for this operating point, thus
the equality constraints g(xk) = 0 are satisfied:

g(xk) = 0 (75)
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The optimization problem defined with (68) ... (74) is not a classic QP
formulation because quadratic equality constraints exist. Now, different steps
can be undertaken for cost and loss optimization in order to derive QP or LP
formulations.

Because of their different nature, different assumptions can be made when
setting up the above optimization problem for the cost and the loss minimiza-
tion OPF problem. Both derivations are given in the following two subsections.

4.3 Total generation cost as objective function in OPF

class A formulations

4.3.1 Sparse, non-compact QP cost optimization problem

After the general derivation of the previous subsection the total generation
cost as OPF objective function is discussed in this subsection.

Since the cost of each generator active power is not dependent on the cost
of another generator the second derivatives of the cost function with respect
to the active power variables of all generators (x1) lead to a diagonal matrix:

Qk = diag(qki ) (76)

with

qki =
∂2Fi
∂x2

1i

∣∣∣∣∣
xi=x

k
i

(77)

and x1i: active power of the generator i; Fi: cost of generator i in function of
its active power.

Note that when assuming quadratic cost curves these factors qki are con-
stant, i.e. not state dependent.

When optimizing cost, all quadratic terms of the optimization problem ex-
clusive the one of the objective function are usually neglected. This is possible
because the cost curves are already of a (near) quadratic nature and turn out
to be dominant. Thus the cost optimization problem is as follows:

Minimize Fcost = Fcost(x1
k) + cT k∆x1 +

1
2
∆x1

Tdiag(qki )∆x1 (78)

subject to

g(xk) + Jk∆x = 0 (79)

and

h(xk) + Ak∆x ≤ 0 (80)
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with

Jk =



U 0 0 J14
k

0 U 0 J24
k

0 0 U J34
k

J41
k J42

k J43
k J44

k


; g(xk) =

g1(xk)

g2(xk)

g3(xk)

g4(xk)


; (81)

Ak =
[

Ak
1A

k
2A

k
3A

k
4

]
; ∆xT =

[
∆xT

1 ∆xT
2 ∆xT

3 ∆xT
4

]
;

The resulting problem is now a classic QP problem. Note that in this
formulation the problem is very sparse. This sparsity must be considered when
applying the QP algorithms to this problem. In [21] sparsity techniques are
discussed in detail.

4.3.2 Compact, non-sparse QP cost optimization problem (Linear
incremental power flow)

The cost optimization problem has been formulated as a QP with sparse ma-
trices. However, the number of variables is very high and thus many variable
related operations will result. In the following a derivation of the cost optimi-
zation problem is given where on one side the number of variables is reduced
to a much smaller set, however, on the other side the sparsity of the matrices
gets lost.

In order to achieve this compact QP formulation variables have to be
eliminated from the equality constraint set g(xk) + Jk∆x = 0 (79).

Note that this equality constraint set contains 2N + 1 + d equality cons-
traints. The variable vector ∆x contains 4N variables.

This set can be reduced to one equation with 4N − (2N + 1 + d) + 1 =
2N − d variables. This means that from the total of 4N variables, 2N + d

variables must be eliminated. Note that d ≤ 2N .
In order to achieve a compact formulation, the variables of the vector ∆x4

(without the real and imaginary slack node voltage variable) (i.e. 2N − 2
variables) are eliminated. From the vectors ∆x2 and ∆x3, d + 2 variables
have to be eliminated: The rule is to eliminate first the variables of ∆x2 for
which demand variable constraints exist (formulated in the equality constraint
set g4). Doing this will eliminate all active reactive power variables of non-
manageable load PQ nodes. The remaining variables to be eliminated are taken
from the vector ∆x3.
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Eliminating the variables accordingly in the inequality constraint set h(xk)+
Ak∆x ≤ 0 reduces the optimization problem to 2N − d non-eliminated varia-
bles.

Two voltage variables at the slack node are not eliminated. This comes
from the fact that there is a chance of having singularity or linearly depen-
dent equality constraints among the equality constraints of the set g. Linear
dependence can lead to zero pivots during factorization. A division by a zero
pivot can usually be avoided if the real and imaginary part of the slack node
voltage are not eliminated.

Since the variable set ∆x1 is not eliminated the objective function is un-
changed.

The optimization problem is now as follows:

Minimize Fcost = Fcost(x1
k) + cT

k
∆x1 +

1
2
∆x1

Tdiag(qki )∆x1 (82)

subject to

α1
T k∆x1 +α2

T k∆x′2 = α0 (83)

((83) is called the linear incremental power flow equation.)
and

h(xk
1, xk

2) + A′1
k∆x1 + A′2

k∆x′2 ≤ 0 (84)

with

• ∆x′2 including all non-eliminated variables excluding ∆x1 (see paragraph
above for what variable types are included).

• h(xk
1, xk

2) representing the inequality constraint set values at the opera-
ting point xk

• A′1
k representing the sensitivities of the inequality constraints with re-

spect to ∆x1 at the operating point xk.

• A′2
k representing the sensitivities of the inequality constraints with re-

spect to ∆x′2 at the operating point xk.

Note that all these matrices can be derived by simple variable elimination
in all equality (79) and inequality constraints(80).
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4.4 Total network losses as objective function in OPF

class A formulations

The formulation of the loss QP optimization problem must be derived dif-
ferently than the cost QP optimization problem. The main reason comes from
the fact that the loss objective function as shown in (69) is linear when using
the active powers of all nodes as a subset of the OPF variables.

Several QP derivations are possible. Two of them are shown in the following
two subsections.

4.4.1 Sparse, non-compact QP loss optimization problem

The basic idea of this optimization problem formulation is the elimination of
the variables of the vectors ∆x1, ∆x2, ∆x3 from the optimization problem as
formulated with (69) ... (74). Thus the goal is to formulate the optimization
problem only in variables of the vector ∆x4 (∆x4 represents the complex
nodal voltages). The loss optimization problem is now as follows:

Minimize Floss = F ′kloss + c′T
k
∆x4 +

1
2
∆x4

TM4
′k

∆x4 (85)

subject to the equality constraints g4 (Note that a quadratic approxima-
tion is used for the variables ∆x1, ∆x2, ∆x3 for the substitution in the
loss-objective function, however, a linearized approximation is used for the
variables ∆x1, ∆x2, ∆x3) in the constraint sets:

g
′k
4 + J4

′k
∆x4 = 0 (86)

The same holds for the inequality constraint set h:

h(xk) + A4
′k

∆x ≤ 0 (87)

with

F ′kloss = Floss(xk1, xk2)− 1Tg1(xk
1, xk

4)− 1Tg2(xk
2, xk

4)

c′T
k

= −1TJ14
k − 1TJ24

k ; M4
′k

= −
m∑
i=1

M14
k
i −

l∑
i=1

M24
k
i

J4
′k

= Jk44 −
3∑
i=1

(
Jk4iJ

k
i4

)
; g
′k
4 = g4(xk)−

3∑
i=1

Jk4igi(x
k)

A4
′k

= Ak
4 −

3∑
i=1

(
Jki4A

k
i

)
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Assuming that a power flow has been calculated with high accuracy for
the solution point xk, the following is valid: g(xk) = 0. This leads to some
simplifications in the above formulas:

F ′kloss = Floss(xk1, xk2) ; g
′k
4 = 0

The optimization problem formulated with (85) ... (87) is a QP formu-
lation. Note that the matrices are still sparse. The optimization problem is
now stated with the variables of the vector ∆x4, i.e. the nodal voltage related
variables.

Solving this problem with a standard QP program is possible, however, due
to the large dimension of the problem (2N variables), the number of non-zero
matrix and vector elements gets very large, as long as no sparsity techniques
are applied during the QP solution process.

In the following a derivation is given where the number of OPF variables is
again reduced to a much smaller set. It must be noted, however, that sparsity
is lost by doing the following steps.

4.4.2 Compact, non-sparse QP loss optimization problem (Qua-
dratic incremental power flow)

The goal of this OPF loss formulation is to reduce the variable set to the
same set as used for the compact QP cost optimization formulation as shown
in the previous subsection 4.3.2. There are several ways to derive compact,
non-sparse loss QP-optimization problem formulations. All these derivations
have in common that at some point linearizations have to be applied to the
original quadratic approximations of the equality constraints.

Without showing the derivations the compact loss optimization problem
formulation is as follows:

Minimize Floss = Floss(xk
1, xk

2) + ∆x1N + 1T∆x′1 +
[
1T 0T

]
∆x′2 (88)

subject to

α1N∆x1N +α1
′T k∆x′1 + α2

T k∆x′2

+1
2

[∆x′1
T∆x′2

T
]
QLoss

k

 ∆x′1

∆x′2


 = α0

(89)

((89) is an extension to (83) and is called the quadratic incremental power
flow equation.)
and

h′(xk
1, x

′k
2 ) + A′1

k∆x′1 + A′2
k∆x′2 ≤ 0 (90)
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Note that

• ∆x1
T =

[
∆x′1

T∆x1N

]
. The separation of this vector into two parts is

only needed for conceptual reasons.

•
[
1T 0T

]
: This has to be represented in such a way, since the losses are,

in the reduced variable set form, a linear function of the active power
variables of PQ load nodes with manageable active load which represent
only a subset of the vector ∆x2

′.

• ∆x2
′: This is the same vector of non-eliminated variables as in the com-

pact cost optimization problem.

• in (89) the same variables appear as in the compact cost optimization
problem (82) ... (84).

• one variable (∆x1N ) does not show a quadratic extension in the equality
constraint formulation of (89).

• the inequality constraints formulation of (90) is identical to the one of
(84). However, it is assumed that no limits will be active for functions
of the variable ∆x1N . This can be justified by using an active power of a
generator as this variable which is far away from its limits and/or which is
not sensitive to optimum solution movements for different OPF problem
conditions. This is important because this variable will be eliminated,
as discussed below and it should not create any quadratic terms in the
(linear) QP inequality constraint set. This assumption can be justified
since usually no functions of this variable (it is an active generation
variable) are used for inequality or equality constraints formulations.
Only the variable itself (i.e. the corresponding active generation) can in
principle be limited. In the actual OPF implementation care has to be
taken that this variable should not be limited at the OPF optimum.

The OPF problem of (88) ... (90) can be transformed into a classical QP
formulation by eliminating the variable ∆x1N , i.e. replacing it in the objective
function by the other non-eliminated variables of (89):

Minimize Floss = Floss(xk
1, xk

2) +
(
1− α1

′

α1N

)T k
∆x′1

+
([

1
0

]
− α2

′

α1N

)T k
∆x′2

− 1
2α1N

[∆x′1
T∆x′2

T
]
QLoss

k

 ∆x′1

∆x′2


+ α0

α1N

(91)
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subject to

h′(xk
1, x

′k
2 ) + A′1

k∆x′1 + A′2
k∆x′2 ≤ 0 (92)

The exact derivation of the matrix QLoss
k cannot be given in this paper

due to space limitations. Note however, that several derivations are possible.
The problem to be solved is always to find the point at which during the
derivations the quadratic terms are to be neglected or replaced by a linear
approximation.

Note that an exact computation of this matrix QLoss
k can be very CPU

time consuming and is usually not worth the effort [18]. The key in this OPF
method is the right approximation of the quadratic terms by the right variable.
It has been shown with prototypes that even a diagonal matrix approximation
for the matrix QLoss

k can lead to good and fast convergence. However in any
case, care has to be exercised by these approximations: They are the driving
values for the optimization, i.e. they determine how fast the variables move
towards the optimum, how much they move during the intermediate QP steps.
Research is still going on in this area of OPF problem formulation and solutions
look quite promising.

4.5 Class A algorithms: Linear programming (LP)

4.5.1 LP formulation

In the following formulations will be given which lead to practical applications
of linear programming and finally to efficient programs.

According to class A a basic requirement is the derivation of linearized
relations for the load flow. This can be either in the form of the Jacobian

J∆x = 0 (93)

or in the form of the incremental power flow

αT1 ∆x
′
+ ∆x1N = 0 (94)

Note that in (94), as compared to (83), the equality constraint has been
normalized in such a way that the factor associated with the variable x1N is 1.
For both (93) and (94) it is assumed that a power flow has been solved with
high accuracy around the operating point, leading to a right hand side value
of 0.

Both forms (93), (94) can be readily incorporated in an LP-tableau.
Since these forms are equality constraints a part of the variables may be

eliminated according to the requirements of the LP-algorithm.
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A delicate problem is the formation of a linearized objective function. The-
reby it is to be observed that the LP-algorithm requires a separable objective
function

Minimize F = cTx (95)

Cost curves are a good example of separable objective functions. Quadratic
cost curves for each generator are assumed to be the true cost curves for the
following derivations. Note that general smooth, convex cost curves could also
be taken and similar derivations could be made.

With quadratic cost curves the optimization problem is as follows:

Minimize Fcost =
∑

Ci (96)

where Ci =
1
2
qiP

2
i + ciPi + Cio

(separable quadratic cost functions)
In order to use an LP algorithm for the solution of this optimization pro-

blem a further approximate step must be considered, namely the conversion of
real cost curves to piece-wise linear curves which can be done to any desired
accuracy, see schematic sketch in Figure 1.

Abbildung 1: Cost curves (piece-wise linear)

An analytic expression for the approximation for the generating cost of
one generating unit is

Ci ≥ do1i
+ d1iPi

Ci ≥ do2i
+ d2iPi

Ci ≥ do3i
+ d3iPi

(97)

Thereby the expressions doji +djiPi represent the straight lines which form
the approximation to the quadratic cost curve.

For the purposes of the class A algorithm this model has to be converted
to an incremental form whereby both costs and generating powers appear as
variables.

Cio + ∆Ci ≥ doji + dji(Pio + ∆Pi) (98)
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The vectors ∆C and ∆P may be replaced by general xi- variables:

∆P ...∆x1

∆C ...∆x5

(99)

Then

F(x) = Co + [1, 1, 1, ...1]∆x5 (100)

subject to

diag (dj)i∆x1 −∆x5i ≤ Coi − dojiPio (101)

(i = 1, 2, ... m (m: Number of generators to be optimized); j = 1, 2, ... S (S:
number of straight line sections per generator))

Here it becomes obvious that the formulation of the cost function leads to
numerous entries in the LP-tableau. At this point a relatively small number
of straight line sections for generators is considered only so as to limit the size
of the LP-tableau.

There are further relations in the form of inequality constraints to be con-
sidered for the tableau, namely limits on the control variables and functional
constraints.

Again, the reasons of keeping the tableau small, generating powers Pi are
considered as control variables only.

Hence, limits and functional constraints are given by

+−∗∗∆x
′
1 ≤ bv (variable limits)

A
′
∆x

′
1 ≤ b

′
fc (functional constraints)

(102)

(∗∗: meaning that both the upper and lower limits of the variables must be
considered)
where A

′
can be full.

Beyond that there is the incremental power flow which is taken as the scalar
equality constraint. It must be incorporated in the tableau. This is done by
eliminating one of the control variables.

Thus the LP problem is given by

Minimize Fcost = [1, 1, 1, ...]∆x5 (103)
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subject to

diag (dj)i∆x
′
1 −∆x5i ≤ Cio − dojiPio (i = 1, 2, ... m-1)

+−∆x
′
1 ≤ bv

A
′
∆x

′
1 ≤ b

′
fc

D∆x
′
1 −∆x5m ≤ Cmo − dojm (only mth variable)

(104)

The last entry is due to the elimination of the equality constraint. Hence
∆x

′
1 comprises m− 1 variables only (m = number of generating powers to be

optimized).
It must also been observed that x5 is not constrained.
As the set of relations above stands it is quite sparse which may be an

advantage depending on the method of solution to be chosen.
If a small number of variables is desired the variables of the vector x5 can

be eliminated and expressed by components of x1 which leads to a tableau
whose variables are control variables only (generating powers).

This general approach to the use of LP within class A algorithm may be
extended to other OPF-problems as long as a separable cost function can be
formulated.

A most recent application of this kind is loss minimization (Stott, [26])
whereby losses are approximated by linearized relations in terms of active and
reactive injections. A basic requirement in this approach is an exact represen-
tation of the linear incremental power flow. The segments to the left and the
right of the operating point need not be accurate.

The problem of choosing the right approximation is pronounced in the
case of loss minimization by reactive injections only. As long as there is no
technical constraint on reactive injections the straight line subsections are the
only means for the limitation of the variables. The subsections must be made
artificially smaller in the course of the iterations (e.g. dichotomy).

4.5.2 LP-solution

For purposes of illustration this particular method of solution is dispensed in
more detail thereby referring to the standard LP method in appendix A.1.

The starting point is an operating point of the power system given by a load
flow solution. This solution is designated by the vector of Poi ’s around which an
improved solution is sought. According to the linearized model the individual
Poi ’s are located at the breakpoints of the straight line sections (besides one
variable). The situation for one generator is depicted by the sketch in Fig. 2.
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Abbildung 2: Change of segment in piece-wise linear cost curves

Since an incremental model is used it is to be observed that the increments
must be feasible

∆Pi ≥ 0 or ∆x
′
1 ≥ 0 (105)

For this purpose each generator power variation is to be modeled by two LP-
variables as indicated in Fig. 2.

At this point it is assumed that the vector ∆x5 is eliminated and substi-
tuted by ∆x

′
1. As a consequence the cost function is modified and will consist

of cT∆x
′
1 whereby the c’s are the result of a transformation.

Minimize Fcost = cT∆x
′
1 (106)

Since the starting point was a solution to the load flow and, of course, to a
previous LP step the vector ∆x

′
1 is zero and can be considered the non basic

vector of the LP tableau (see appendix A.1). Thereby it is taken for granted
that at this point no control variables are exceeded. Functional constraints are
not considered at the moment.

Thus, a classical LP tableau can be established whereby the vector ∆x
′
1

corresponds to the non-basic solution xD of the tableau. The slack variables
(Luenberger [8]) are the basic variables.

The relative cost vector will indicate which variable will have to become a
basic variable.

The LP-tableau is exactly the one in Luenberger [8].
A change of base may be caused by one of the following items:

• due to the change of α’s for the new load flow solution a cost coefficient
has changed sign

• the straight line approximation to the quadratic cost curve of a generator
has been changed.

These items are assumed to be of such a nature that a cost coefficient has
changed its sign.

Beyond that there are indications that constraints and limits have been
exceeded. These may be due to

• a change in the straight line approximations of the cost curves

• functional constraints which have not been considered so far
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• consequences of an updated load flow solution, e.g. the mth control va-
riable not explicit in the tableau has exceeded its limits

These constraint violations require another type of change of base as explained
in appendix A.1.2.

The necessary changeover to a feasible solution may be performed step-
by-step, i.e. constraint by constraint in order to keep the tableau small.

The computational effort in using the linear programming method depends
on

• the number of update operations for the incremental power flow

• the number of update operations for the inequalities

Updating on the right hand side is not very demanding. Updating the
coefficient of the tableau results in a complete recalculation of the partially
inverted tableau. In the iterative process updating is necessary whenever a
new load flow solution becomes available.

It is obvious that the overall effort depends on the dimension of the tableau
which can be kept to a minimum if the cost curves are modelled by small num-
ber of segments (straight line approximations). However, in order to achieve
the required accuracy the lengths of the segments have to be reduced as the
number of iterations increases. This process is called segment refinement.

The idea of segment refinement is to keep the number of segments in the
tableau fixed and to reduce the lengths of the segments.

One possible procedure is the following: The tableau always comprises a
fixed number of segments which cannot be less than two, if limits (artificial
or real) are applied on the outside of the segments or four, if the limits are
located at a distance of the operating region.

Whenever an optimal solution for a given segmentation is found the lengths
of the segments are reduced thereby changing the coefficients of the rows in the
tableau corresponding to the representation of the cost curves. If at this point
the solution turns out to be infeasible a change of base has to be performed
as outlined in the appendix A.1. (problem a).

From here on the refinement process can be continued or a new load flow
solution can be asked. The decision will depend on the segment size, the relati-
ve improvement of the objective function and the mismatches at the iteration
where the optimization is performed.

The overall effort depends on the dimension of the tableau which can be
kept to a minimum if the cost curves are modelled by a small number of
segments only, namely in an adaptive way in the vicinity of the solution point
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(segment refinement). However, adapting the segments also requires updating
of the tableau.

Finally, the various steps in the course of one iteration will be as follows:

• 1. solve an ordinary load flow

• 2. extract Jacobian or incremental power flow

• 3. create or update segments of cost function, form functional constraints

• 4. generate LP-tableau

• 5. solve LP

• 6. check: size of segments; active limits; size of corrections resulting from
LP

• 7. if corrections, steps etc. small enough stop, otherwise go to 1.

The effectiveness of linear programming in class A methods will depend
on the programming skill, in particular in handling the tableau, base change
operations, updating and segment refinement.

4.6 Class A algorithms: Quadratic programming (QP)

4.6.1 QP formulation

As under 4.5.1 a basic requirement is the derivation of linearized relations
for the load flow. Again this can be done by taking the Jacobian (93) or by
working out the incremental power flow (94). Either form will be needed in
the formulation of the Lagrangian which plays a central role in QP.

The objective function can either be quadratic (cost) or linear (losses) as
given by the relations (68) and (69).

The quadratic function describing operating cost consists of a quadratic
form having a diagonal matrix only (separable functions) as given by (78).

Minimize Fcost = Fcost(x1
k) + cT k∆x1 +

1
2
∆x1

Tdiag(qki )∆x1 (107)

In order to convert the loss minimization problem to a quadratic one the
incremental power flow is extended as explained in chapter 4.4. Thereby a
number of variables is eliminated and the incremental power flow is incorpo-
rated in the objective function yielding the relation (91). This can be done if

46



the slack power can be expressed by other non-eliminated variables, i.e. active
power, voltage magnitude or reactive injections variables.

The problem is thus brought into a form where a quadratic objective func-
tion is left without the need to consider an equality constraint any further.
This can also be understood by the fact that the nth reactive injection need
not be considered since there is no cost attached to it.

In the cost minimization problem (MW dispatch) the equality constraint
cannot be eliminated because all control variables have a quadratic or in ge-
neral convex, non-linear cost function.

Thus, the general QP-problem is formulated as follows

Minimize F = Fk + cT∆x +
1
2
∆xTQ∆x (108)

subject to

g(xk) + J∆x = 0 (109)

As outlined above the equality constraint disappears when a compact loss
minimization problem with a reduced variable set is considered.

Beyond that variable and functional constraints have to be attached which
in general will be given by

h(xk) + A∆x ≤ 0 (110)

Here ∆x is understood as the deviation of the control variable from its ope-
rating point as determined by the power flow.

At this point the Lagrangian in terms of the deviations can be formulated
as

L = cT∆x + 1
2∆xTQ∆x

+λT (g(xk) + J∆x) + µT (h(xk) + A∆x)⇒ min.
(111)

Since the Lagrangian in this form is quadratic one of the QP- algorithms
may be applied for the solution of the QP-problem.

4.6.2 QP solution

The Lagrangian above or its components are suitable for a direct application
of a QP-algorithm.

One example is the use of the Beale algorithm which is successful for net-
works up to about 250 - 300 nodes and to 50 - 80 control variables.

For larger networks other methods have to be used.
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For the dispatch problem (MW-Dispatch), i.e. cost minimization the me-
thod outlined under A.2 is quite suitable. The important feature of the dis-
patch problem is the fact that Q is a diagonal matrix and the equality cons-
traint is a scalar only.

The system to be treated for the unconstrained solution is extremely sparse
as shown below

Muo =
[−c
b1

]
(112)

Due to the sparsity of the matrix M the formation of

− [A 0] M−1

[
AT

0

]
(113)

will benefit considerably from various sparsity techniques.
As explained under A.2 the further steps are LP-like and in the end the

final solution is obtained by superposition.

uc = uo + ∆u (114)

Working with this method will show that it is advisable to add constraints
step by step, in particular functional constraints in order to maintain a small
tableau.

The interesting feature of the lastmentioned algorithm is that it is fully
based on linear methods. In a first step the unconstrained problem is linear.
The superimposed corrections are determined by linear programming methods.
The linear methods are fully effective if the sparsity of the system can be
exploited.

In summary, the various steps in the course of one iteration will be as
follows:

• 1. solve an ordinary load flow

• 2. extract Jacobian or incremental power flow

• (2.a. extract extended incremental power flow for loss minimization)

• 3. setup sparse system which determines the unconstrained solution

• 4. generate LP-tableau

• 5. solve LP

• 6. determine superimposed solution and update

• 7. if corrections, steps, etc. small enough stop, otherwise go to 1.
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4.7 Summary

In summary the class A OPF algorithms are based on the iterative and sepa-
rate use of the power flow to solve for a given operating point and a LP or QP
for the optimization problem around the power flow solution.

The power flow part of these class A OPF algorithms is the conventional
power flow as known from student text books. All special features like PV-PQ
node type switching, local tap control can be handled by the power flow.

The classical LP and QP algorithms as described in mathematical text
books are often quite slow for the solution of the OPF optimization problem.
In the appendix some points are discussed about efficient handling of the LP
and QP algorithms considering the special features of the OPF.

In principle the only necessary link between the power flow part and the
optimization part is the transfer of the operating point xk, representing the
OPF variables: The power flow solution is transferred to the OPF to be used
as the solution around which the approximations are made. Then the LP or
QP algorithm is solved. The optimal solution (note: optimality is valid only
with respect to the approximations around the previous power flow solution)
is transferred back to the power flow and represents another power flow input
data set. The power flow corrects the approximations made in the preceding
LP or QP optimization. Thus the power flow adapts the nodal voltages and the
slack power such that the mismatches are below predefined, small tolerance
values. By executing this procedure several times the power solution point
tends to go toward the optimum, i.e. the result of the very last LP or QP
solution should be identical (within a certain tolerance) to the preceding power
flow solution. At this point the optimal solution is reached.
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5 OPF CLASS B. POWER FLOW INTEGRATED

IN OPTIMIZATION ALGORITHM

5.1 Introduction

In this section the OPF formulation is solved by an integrated method as
compared to the OPF formulation of the Class A where the power flow is
separated from the optimization part.

First the easiest case is discussed: The solution of the OPF problem with a
given set of equality constraints only. Although this certainly does not satisfy
the real-world constraints (which would include inequality constraints), it is
discussed here in order to show the principles of the Newton-Raphson based
approach which are also used in the following sections. There the more realistic
OPF problem is solved with consideration of both equality and inequality
constraints.

The objective function will usually be formulated as a general function
F(x), however, where the OPF algorithm results in special cases for either
cost or loss objective functions special discussion is given.

The same holds for the inequality constraints h(x): When any special de-
rivation results this is discussed.

5.2 Solution of OPF with equality constraints only

The problem is as follows:

Minimize F(x) (115)

subject to g(x) = 0

The solution is based on the Lagrange formulation (the index eq refers to
the equality constrained OPF problem):

Leq = F(x) + λTg(x) (116)

The optimality conditions for (116) are:

∂Leq
∂x = ∂

∂x

(
F(x) + λTg(x)

)∣∣∣
x=x̂,λ=λ̂

= 0

∂Leq
∂λ

= g(x)|
x=x̂,λ=λ̂

= 0
(117)

50



In (117) the following substitutions can be made; J is the Jacobian matrix:

J =
∂g(x)

∂x
(118)

Thus the following system has to be solved to achieve these optimality
conditions:

∂F(x)
∂x + JTλ = 0

g(x) = 0
(119)

(119) can be summarized as one non-linear system:

W(x,λ) = 0 (120)

This non-linear system must be solved by any efficient method. General
mathematical methods for solving non-linear systems can be used. However,
the solution based on the Newton approach is most often employed.

5.2.1 Newton based solution

(119) or (120) can be solved by the iterative Newton-Raphson approach which
leads to the following linear system for the solution of (120) (the index k refers
to the value of the associated variable at iteration k):

W(xk, λk) +
∂W

∂x

∣∣∣∣
x=xk,λ=λk

∆xk +
∂W

∂λ

∣∣∣∣
x=xk,λ=λk

∆λk = 0 (121)

Now, the linear system which must be solved iteratively, takes the form: H JT

J 0

 ∆xk

∆λk

 =
rk

gk

 (122)

with

H = Heq =
∂F2(x)

∂x2
+ diag(λ)

∂g2(x)
∂x2

(123)

and

rk

gk

 =
reqk

geqk

 =
−
(
∂F(x)
∂x + JTλ

)∣∣∣
xk,λk

−g(xk)

 (124)
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(122) is solved iteratively, i.e. the values for x and λ from the previous
iteration are inserted into H and J and the right hand side of (122). Then
(122) is solved for ∆x and ∆λ which again are used to update the values for
x and λ as follows:

xk+1 = xk + ∆xk (125)

λk+1 = λk + ∆λk

Doing this for some iterations will usually result in a convergent solution.
This solution is the optimum for the OPF equality constrained problem as
given in (115), i.e. the resulting values for x and λ are the values where the
objective function F(x) is minimal and where all equality constraints g(x) are
satisfied.

(122) is a linear system which, in principle, can be solved by any line-
ar equation solving algorithm. Note, however, that the matrices can be very
sparse and thus specialized sparsity algorithms must be applied to solve the
system efficiently [21].

Decoupling principles as used in the decoupled power flow could be used if
polar coordinates are chosen. However, experience has shown that for the OPF
decoupling can have drawbacks when looking at overall robustness. However,
in general, most algorithms which have been developed for power flows, can
be applied to the equality constrained OPF problem with little modifications.

The conclusion from this subsection is, that whenever the equality cons-
traint for an OPF problem is given the solution is not more difficult than the
solution of an ordinary power flow problem. The problem, however, are the
inequality constraints. If one would know beforehand which inequality cons-
traints will be active, i.e. limited in the OPF optimum, one could include these
constraints as equality constraints from the beginning of the optimization and
solve with the procedure discussed above.

The active set of inequality constraints, however, is not known in advance
and thus special algorithms have to be found to determine whether to make
an inequality constraint active or not. This is discussed in the next subsection.

5.3 OPF solution with consideration of inequality constraints

5.3.1 Introduction

The Kuhn-Tucker conditions (see (61)) determine if at any solution point a
relative optimum has been found, i.e. for all inequality constraints which has
been included in the active constraint set, the Lagrange multiplier µ must
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be positive in order to justify the inclusion of the corresponding inequality
constraint in the active set. This active set includes all inequality constraints
being binding at their respective limits. In the OPF class B, discussed in this
section, two approaches are used to solve the inequality constraints problem:
The handling of inequality constraints by penalty techniques, mainly used
for variable related limits and the explicit modelling of functional inequality
constraints as functional equality constraints, once they become active at their
limits. Note that active functional constraints can also be modelled by the
penalty approach.

The penalty based approach leads to an extension of the equality cons-
trained OPF problem as discussed in the previous subsection, i.e. the possible
inequality constraints are handled in a quadratic form as extensions to the ori-
ginal objective function. By using small or large weights (penalties) for these
additional quadratic objective functions terms, the equality constrained OPF
problem is forced to a solution which is optimal with respect to the equality
constraint set, but in addition to that, considers the inequality constraints.
Those with a large weighting factor, will have the effect of being binding, i.e.
limited, those with small weighting factors will be free, i.e., these inequali-
ty constraints will not be binding at their limits in the OPF optimum. In
summary, this penalty technique based approach can be seen as an equality
constrained OPF problem with an artificially extended objective function.

This approach has one problem: When should an inequality constraint be
held at its limit and when should it be freed.

It must be noted that there are no penalty based approaches known today,
for solving the Kuhn-Tucker conditions with straightforward solution proces-
ses. Today, in order to improve speed, convergence and robustness, trial passes,
heuristics or other similar measures are used in this approach. The use of very
fast sparsity routines for updating factorized matrices, to add or remove rows
and columns is usually the selling point for the penalty based methods for
the OPF problems. Without them this approach would not make much sense,
since very quickly they would become slow and the use of some heuristics or
trial iterations for the determination of the correct constraint set could not be
justified any more.

5.3.2 Penalty term approaches for handling inequality constraints

When using the penalty term approach two main categories of inequality cons-
traints can be distinguished.

• Limits on OPF variables
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• Limits on output variables, i.e. non-linear or linear functions of OPF
variables

The distinction is done because these two types can be handled with diffe-
rent efficiency in the penalty term based OPF algorithms. Among the various
constraints of these categories most can be treated in the same way in the al-
gorithms. However, there are distinct differences between the implementations
of these types.

In the following subsections the penalty term approaches for the two ine-
quality constraint types are discussed.

Limits on OPF variables The general idea of the penalty term techniques
is to add an additional quadratic function for every inequality constraint to the
original objective function. By using large weights for these quadratic func-
tions, the optimization algorithm is forced to move constraint values, which
are thus made artificially expensive, to desired limit values. The effect of this
penalty term technique corresponds to including the violated constraint into
the active set.

The function added to the original objective function looks as follows with
limited OPF variables xi:

L = Leq +
∑(

1
2
Wi(xi − xiLim)2

)
(126)

In (126), the Lagrangian Leq corresponds to the Lagrangian as given in
(116) of the equality constrained OPF problem. The

∑
goes over all control

variables x which could become limited at the OPF optimum.
The Lagrange optimality conditions are derived in exactly the same way

as in (119). The main difference lies in the derivatives of L with respect to the
variables x:

∂L
∂x

=
∂Leq
∂x

+ diag (W) (x− xLim) (127)

Making now the same derivation as for the equality constrained OPF pro-
blem, i.e. solve the optimality conditions by an iterative Newton solution, the
matrices H and the right hand side of the equation (122) must be adapted:

H = Heq + diag(W) (128)

rk = rkeq − diag(W)(xk− xLim) (129)
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Adding the terms for a possibly binding OPF variable i to the original
objective function with a large value for Wi will force the variable xi within
ε to its limit value xiLim. The rule is that for larger Wi smaller ε values will
result. Note that by adding this term to the objective function, i.e. also to the
Lagrangian, the optimality conditions and also the subsequent Newton-based
solution matrices are changed. This is shown in the above equations (126)
... (129). In (122) only diagonal terms and the right hand side are changed
(see (128)) with this type of constraint which means that a fast factor update
technique can be used to update the factorized matrix. A large value Wi is
used to enforce the constraint, a small valueWi is used to relax the constraint.
The sparsity schemes, i.e. the fill-in patterns are not affected whether this
constraint is activated or not during the iterations.

Other techniques can be used to speed up this process: Assuming that a
variable xi violates its limit by +∆xi in the present iteration the limit value
xiLim can be shifted by −∆xi so that in the next iteration the variable xi will
be forced near its real limits. Doing this iteratively has the advantage that
only the right hand side of the iterative solution process has to be changed
and not the matrix factors. However, the speed gain could be offset by less
accuracy in the limit enforcement.

The question when to enforce a limit is usually quite simple, i.e. whenever
it violates its limit. However, the problem when to relax a variable during
the solution process, i.e. when to use small Wi values, is not as clear. The
use of quadratic penalty terms in second order methods, however, tells, if an
enforced, highly penalized variable is truly binding or not: If the variable is on
the violated side by a value ε it can be assumed that the variable is actually
binding. If this is not the case, the variable should be freed, i.e. the weight
variable must be reduced to a small, non-penalizing value.

Another method is the usage of soft constraints, i.e. the enforcing of an
inequality constraint i with a value for Wi being finite and much less than
the maximum value needed for complete inequality constraint enforcement.
By doing this an intermediate solution can be obtained which can show which
of the variables tend to go their respective limits and which ones not.

It is obvious that the chance of finding the active inequality constraints
immediately is quite low. Thus trial iterations can be employed to find a
better set of binding inequality constraints. This is usually done by holding
the matrices involved constant, i.e. no refactorization in done. Only the set
of possibly binding constraints is changed from trial iteration to the next.
Note, that for this reason, trial iterations can be much faster than the normal
Newton-based iterations.
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Limits on output variables Output variables are represented by functions
of OPF variables. Branch flow or voltage magnitude (only when using rectan-
gular coordinates) constraints are typical examples for this constraint type.
Two different ways to implement them are possible. One method is to use the
same technique as for state variables, i.e. the addition of quadratic penalty
terms for each potentially binding output variable. In the other method those
inequality constraints which have been determined by some heuristic method
to become active are explicitely added as equality constraints, i.e. they are
treated in exactly the same manner as equality constraints.

The treatment of equality constraints has been discussed in the previous
subsection. Note, however, that adding or removing equality constraints must
be done with consideration of sparsity techniques in order to maintain overall
speed. Further a Lagrangian multiplier has to be used whose sign indicates
if the constraint should be active or not. This method of handling inequality
constraints is not discussed further in this text.

When adding a functional inequality constraint hi(x) in penalty form, the
general form for the Lagrangian function looks as follows :

L = Leq +
H∑
i=1

1
2
Wi (hi(x)− hiLim)2 (130)

(H=number of output variable constraints)

The optimality conditions (first order derivations) and the necessary matrices
and right hand sides for the Newton based solution process (second order
derivations) are not given here for space reasons. Their derivations, however,
are straightforward.

The constraints would be enforced by either changing the weighting factor
Wi or by moving the limits in order to enforce or relax the inequality constraint
i. This penalty approach for output variables is, mathematically seen, possible,
however, new terms will be created in the optimality condition matrices and
its subsequent Newton-based solution process which will need sophisticated
matrix-factor updating algorithms in order to maintain a fast solution process.
However, the usual output variable inequality constraints do not destroy the
general sparse structure of the Newton based OPF solution process and in
principle do allow sparsity storage and matrix factor techniques.

The rules to enforce and to relax a variable by changing the weight hi are
in analogy to the procedure for handling limits on OPF variables by penalty
techniques. Thus trial iterations, soft limit enforcement and other heuristic
techniques can be applied.
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However, note, when using penalty techniques, no systematic algorithm
exists to determine which inequality constraints should be relaxed and which
should be enforced at any stage during the Newton solution process.

Thus, convergence problems are quite common when the network is not
tuned to this penalty based approach. Tuned penalty based algorithms for
OPF problems can converge well and fast, however, one tuning set might
only be valid for a small load variation and must be adapted to other load
conditions.

5.4 Summary

The OPF class B algorithms solve iteratively for the Kuhn-Tucker conditions
without explicitely using a conventional power flow. Thus in this class B of
OPF algorithms all active constraints, i.e. all power flow equality constraints
and all binding inequality constraints, the objective function reduction and the
OPF variable movements are handled simultaneously. The OPF class B can be
compared with the conventional power flow solved with the Newton-Raphson
method. The main problem of the OPF class B algorithms lies in the handling
of inequality constraints, i.e. the determination of the set of binding inequality
constraints. This is done with heuristic methods which include mainly trial
iterations and soft limit enforcement.

57



6 FINAL EVALUATION OF THE METHODS

As with the ordinary power flow OPF methods are judged by their perfor-
mance with respect to speed, versatility and robustness. At this point in time,
however, there is no single OPF method which meets all requirements satis-
factorily.

Class A and class B methods have their relative merits and perform well
for one or the other particular application. In any one problem, however, a
method could show poor performance.

LP methods in class A have the advantage of treating constraints in a sy-
stematic and efficient way. However, cost minimization and loss minimization,
although being treated by this approach are not equally efficient. Constraints
can be treated well in both cases whereas the exact extremum of the objective
function can be reached in case of cost minimization only. The loss minimum
is approximated.

When applying QP methods in class A both abovementioned problems can
be handled accurately. Cost minimization is at least as efficient as with LP.
Loss minimization is hampered by the cumbersome quadratic form specifying
the objective function and its treatment by the QP algorithm. The experience
is, however, that a few iterations are needed only.

Class A methods are also attractive because the starting point is a solved
load flow which in most cases represents a feasible solution for the optimization
problem. Quite often the iterative solutions in the beginning need not be very
accurate. So the total number of load flow iterations is not considerably larger
than for an ordinary load flow, e.g. twice as high.

Class B methods are attractive at a first glance . They solve the problem,
i.e. they meet the optimality conditions in a global way. Convergence in the
Newton approach is very good. However, when considering the way in which
constraints have to be handled its attractiveness is moderated. Heuristics and
tuning are needed which is somewhat compensated by the advantage that
sparsity techniques can be employed, refactorization of the Hessian is avoided
and well-known techniques of the ordinary load flow are applicable.

At the moment it seems that class A methods are taking the lead and this
will be even more so when LP- and QP-methods are being further improved.
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A APPENDIX

A.1 Linear programming (LP) algorithms

A.1.1 The basic linear programming method (Simplex)

In the following a series of LP-methods and -algorithms is presented which
follows closely Luenberger [8]. The nomenclature and definitions are taken
from there.

The standard linear programming problem is defined as

F = cTx ⇒ min (131)

subject to:

Ax = b

x ≥ 0

(132)

where

• x is the vector of unknowns (x comprises both original and LP-slack
variables), dim x = n

• c is the vector of cost coefficients

• A is an m x n matrix

• b is the vector specifying the constraints, dim b = m

By partitioning the matrix A into B (m x m) and D (m x n-m), the vector
x into xB and xD the problem is formulated as

F = cB
TxB + cD

TxD ⇒ min (133)

subject to

B xB + D xD = b

xB ≥ 0

xD ≥ 0

(134)

where

• B is the basis,
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• xB is the basic solution and

• xD is the non-basic solution.

Since it is known that the optimum solution will be found at one of the
feasible basic solutions, the latter are checked only.

At the start it is assumed that a feasible basic solution is available, i.e.
xB ≥ 0, xD ≥ 0. Methods will be shown later which allow to find a feasible
solution if such one is not given. Then

xB = B−1b (135)

or

xB = B−1xB −B−1DxD (136)

The cost function z is given by

z = cB
T (B−1b−B−1DxD) + cD

TxD =

= cB
TB−1b + (cD

T − cB
TB−1D)xD

(137)

The last term is called the relative cost vector consisting of relative cost coef-
ficients

rT = cD
T − cB

TB−1D (138)

These relations are put in a frame which is called the tableau

T =

 U B−1D B−1b

0 cB
T − cB

TB−1D −cB
TB−1b

 (139)

whereby the left side matrix
[

U
0

]
is superfluous and need not be stored or

manipulated (U is a unity matrix).
The tableau contains the following important information.

• −cB
Tb−1 is the negative value of the cost function of the current base

• B−1b is the base vector (current)

• cB
T − cD

TB−1D is a row vector whose elements indicate by their sign
if the cost function can be further decreased
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A negative sign of an element of the relative cost vector says that a further
decrease of the objective function is possible. The change of the corresponding
non-basic variable in xD against a basic variable in xB will yield this decrease.
The basic variable is located by checking the ratios yio/yij and taking the
smallest positive values (yio = value of xB in row i, yij = coefficient in column
j which has the negative cost coefficient).

The base change is executed by manipulating all elements of T . The mini-
mum of the objective function is found when all cost coefficients are positive
(=optimum feasible basic solution).

A.1.2 Changeover from a non-feasible to a feasible solution

Problem statement In LP- and QP-problems there are situations or star-
ting solutions which are not feasible, i.e. xB < 0. This means that the base
point is outside the feasible region.

If a feasible region exists a feasible basic solution can be reached by one
or several base change operations. The operations will depend on the speci-
fic problem. In the OPF- algorithms two kinds of problems are encountered,
namely

• Problem a.: A constraint is added to the tableau which generates a ne-
gative slack variable when the current basis solution is inserted

• Problem b.: The basic solution is not feasible right from the beginning

Problem a. is faced in LP-based OPF methods, e.g. after completing a
load flow or after segment refinement. The cost coefficients may be the same
or may have changed also. A change of base is necessary. The question is how
to perform the base change operation.

Problem b. is found in the QP-method which treats constraints by LP-
steps, see appendix A.2. In this particular case base change operations are
confined to the row with the negative base value and the column where i=j
(diagonal).

Solution of problem a. For the explanation of the algorithm the LP-
tableau is extended the following way:

T =


U 0 B−1D B−1b

dT 1 0T bA

0 0 cB
T − cB

TB−1D −cBB−1b

 (140)
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where dTxB ≥ bA is the violated constraint. (d is a row vector, bA is a
scalar).

In a first step the elements of dT are eliminated by adding rows appropria-
tely scaled to the last row such that the elements of the row disappear (LU
factorization). The result is a standard tableau with the only difference that
the values of the last element of the base vector will be negative yio < 0.

It is now obvious that the last basic variable has to leave the base and
the non-basic variable showing the smallest positive value of yio/yij has to
enter the base. After the change of base the basic solution is feasible but
not necessarily optimum. However, the subsequent base change operation is
standard.

Solution of problem b. In this problem the tableau contains B−1D and
B−1b only. There is no relative cost vector nor is there a cost function, see
appendix A 2.

The objective of the base change operation is to achieve a feasible basic
solution subject to the condition that the operation is pivoted around the
diagonal of B−1D. This is a condition of the QP-algorithm.

The algorithm starts with one or more elements of B−1b being negative.
The pivot element is the diagonal element of this particular row. Hence the
base change operation is straight forward. If there are further negative elements
in the base the process is continued.

The process stops when all elements of the base vector are positive. There
is just one solution to the problem (for a convex QP-problem).

A.2 Quadratic Programming

The classic objective function of a QP problem is as follows:

F =
1
2
xTQx + cTx ⇒ min (141)

subject to linearized equality and inequality constraints:

Jx− b1 = 0

Ax− b2 ≤ 0

(142)

The matrices Q, J, A are of general nature. Depending on the OPF QP-
variable choice they can be either sparse, constant or also non-sparse.

In the following the QP will be transformed into an unconstrained QP opti-
mization problem whose solution is trivial. In order to achieve the QP solution
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with consideration of the inequality constraints a superposition is applied. The
resulting optimization problem is a Linear Programming based optimization
problem ([24], [25]). This derivation is briefly shown in the following.
The Lagrange function with consideration of equality constraints only and the
corresponding optimality conditions are as follows:

L = 1
2x

TQx + cTx + λT (Jx− b1) (143)

 Q JT

J 0

u0 = Mu0 =
−c

b1

 (144)

with

u0 =
x0

λ0

 (145)

The Lagrangian for the problem with inequality constraints and its opti-
mality solutions is as follows:

L = 1
2x

TQx + cTx + λT (Jx− b1) + µT (Ax− b2) (146)

Muc +

 AT

0

µc =
−b0

b1


Axc ≤ b2

µc ≥ 0

(147)

The solution of this inequality constrained problem is now split into the equa-
lity constraint solution and a superposition:

uc = u0 + ∆u (148)

It follows for the optimality conditions for the inequality constrainted OPF
problem:

M∆u +

 AT

0

µc =
0

0


A(x0 + ∆x) ≤ b2

(149)
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Since the vector x is a subvector of the vector u the inequality constraints can
be rewritten. If substituting also the change of the variables ∆u the following
inequality constraint set results:

− [A, 0]M−1

 AT

0

µc ≤ b2 −Ax0 (150)

This inequality constraint system corresponds conceptually to the following
problem:

Tµc ≤ b µc ≥ 0 , b ≥ 0 (151)

The problem is to find a vector µc which satisfies the above inequality cons-
traints. Conventional LP techniques can be applied to do this.

After having found the feasible point for the above inequality constraint
problem the other (eliminated) variables can be found be replacing the values
for µc into the relevant equations:

∆u = −M−1

 AT

0

µc (152)

Of course the inversion of the matrix M is not actually done in a computer
implementation. A forward and backward solution is executed with the factors
of the matrix M.

As derived above the solution must be found for the following inequality
constrained system:

Tµc ≤ b (153)

This is in principle a classical LP problem. Several solution methods can be
found in literature. In this appendix one possible solution is briefly discussed.

A vector of slack variables xB is introduced. They can be seen as a set of
base variables. U is a unity matrix.

Tµc + U xB = b (154)

The base variables of non-satisfied inequality constraints are negative. In the
optimum all variables of the LP problem must be positive. By choosing a
negative pivot in the row a negative base variable it can be made positive.
The principle is to make base changes such that all base variables are finally
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positive. If all base variables are positive a feasible solution for the inequality
is found.
In this special case of inequality consideration a special choice for the pivot is
necessary: If an inequality constraint i becomes active, i.e. binding at its limit,
the associated base variable xBi = 0 becomes zero. At the same time the
associated variable µi 6= 0, i.e. each equality constraint or binding inequality
constraint must have an associated Lagrange multiplier with a value 6= 0. This
means that for every set of associated variables (xBi , µi) one and only one of
them must be exactly zero. This means that in the LP tableau of the inequality
constraints the pivot for base changes can only be a diagonal element.

Without giving a proof in this paper, it can be shown that the solution for
the problem, if it exists, is unique.

It can be also be shown that the actual implementation of this LP-opti-
mization can be done with clever and fast updating techniques when the size
of the inequality constraint set changes. However, due to space reasons this is
not done in this paper.

A.3 Symbols

The following notations are used througout this text:

• Symbols representing complex variables are underlined.

• Matrices are shown in capital boldface letters.

• Vectors are shown in small boldface letters.

A.3.1 Symbols used in the power flow

The following symbols are used in the conventional Power Flow equations.
j: complex multiplier (for imaginary part of complex variable)
∗: conjugate complex operator
k: associated variable or expression is state (or iteration) dependent
opt: associated variable is optimum variable
Real: Real part of following complex expression
Imag: Imaginary part of following complex expression
T : Transposed - operator
low: low limit of a variable
high: upper (high) limit of a variable
scheduled : related to variable with scheduled, predetermined value
∆: change operator for variables, matrices, vectors
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∂: derivative operator
N : total number of electrical nodes
m: total number of generator PV nodes
l: total number of load PQ nodes
EL: number of elements in loss objective summation function

slack: slack node index
kslack: constant slack node voltage ratio
Pi: active power at node i
Qi: reactive power at node i
PscheduledPQi : scheduled active power at PQ node i
QscheduledPQi

: scheduled reactive power at PQ node i
V: vector of complex voltages
V i: complex voltage at node i
V i: voltage magnitude at node i
ei: real part of V i

fi: imaginary part of V i

Θi: voltage angle at bus i : arctanfiei
eslack: real part of V i, i: slack node
fslack: imaginary part of V i, i: slack node
VscheduledPV i : scheduled voltage magnitude at PV node i
I: vector of complex currents
I i: complex current at node i
Iei : real part of Ii
Ifi : imaginary part of I i
Pij : active power flow in the branch from node i to node j
Qij : reactive power flow in the branch from node i to node j
Phighij : upper MW flow limit in the branch from node i to node j
Shighij : upper MVA flow limit in the branch from node i to node j
Qij : reactive power flow in the branch from node i to node j
Y: complex nodal admittance matrix
Y ij: complex element of Y-matrix at row i and column j
yij : absolute value of Y ij

gij: real part of Y ij

bij: imaginary part of Y ij

Gij: real part of admittance of a π - element between nodes i and j
Bij : imaginary part of admittance of a π - element between nodes i and j
θij : angle of admittance gij + jbij : arctan

bij
gij

Bio : charging/2 (purely capacitive) of line from i to j measured at node i
tij : tap of transformer between nodes i and j
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A.3.2 Symbols used in optimal power flow optimization algorithm

The following symbols are used only in connection with the OPF.
k: index referring to state and iteration dependent matrices, vectors
diag: representing a diagonal matrix
U: identity (unity) matrix
X : vector of control variables
U : vector of state variables
P : vector of demand variables
xi: OPF variable i
x: vector of OPF variables
xi: subset i (i = 1 ... 4) of vector x
x3j: subset j (j = 1 or 2) of vector x3

F : objective function
Fcost: total cost objective function
Fcosti : cost function of generator i
Floss: total loss objective function
Flossi : losses related to branch i
g: set of OPF equality constraints
gi: subset i (i = 1 ... 4) of OPF equality constraints g
h: set of inequality constraints
λi: Lagrange function multiplier for equality constraint i
µi: Lagrange function multiplier for inequality constraint i
λ: vector of all λi
µ: vector of all µi
L: Lagrange function
H: Hessian matrix
Q: quadratic cost coefficient matrix of quadratic objective function
QLoss : quadratic loss coefficient matrix of quadratic loss objective function
qi: quadratic cost coefficient of variable active generator power i
c: vector of linear cost coefficients of objective function
A: sensitivity matrix for inequality constraints in linearized form
Ai: submatrix i (i = 1 ... 4) of A
M: matrix representing second derivatives of the power flow equations
Mij: submatrix of M
Ai: submatrix i (i = 1 ... 4) of A
b1: right hand side values of linearized equality constraints
b2: right hand side limit values of linearized inequality constraints
J: Jacobian matrix (first derivatives of power flow equations)

67



Jij : submatrix of J
α: vector of linear incremental power flow equality constraint
αi: subvector i (i = 1 or 2) of α
W: non-linear system representing optimality conditions (OPF class B)
H: matrix representing second derivatives of the Lagrangian

eq : index associated with a variable of the equality constrained OPF æ
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